首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell aggregation was studied using the method of dynamic light scattering in the course of growth of Micrococcus luteus cultures in a liquid medium. The method detects particles ranging in size from 0.5 to 1000 μm in samples containing no more than 105 cells/ml. When grown in liquid media, M. luteus forms aggregates; during the lag phase, 80% of the cells are found in aggregates of 10–1000 μm, only minor amounts being represented by single cells. With the onset of exponential growth, the aggregates were decomposed and single cells became prevalent in the culture liquid. This observation confirms that the aggregation of the cells during the lag phase is prerequisite to the initiation of bacterial growth. The method may be used in biotechnology for monitoring the state of bacterial cultures. __________ Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 6, 2005, pp. 647–651. Original Russian Text Copyright ? 2005 by Voloshin, Kaprelyants.  相似文献   

2.
The response of the gram-positive bacterium Micrococcus luteus to heat shock (45 degrees C, 15 min) and the adaptogenic activity of alkylhydroxybenzenes (AHB), which are extracellular growth-regulating substances of these bacteria, were studied. The perception of stress and the postshock behavior of M. luteus cells proved to depend on the growth phase and medium. The magnitude of stress response was more pronounced in cultures grown on synthetic medium than in cultures grown on rich medium (nutrient broth). During exponential or linear growth, the cells were more sensitive to the temperature effect than during decelerated growth. In linearly growing M. luteus cultures, the amount of total intra- and extracellular alkylhydroxybenzenes, the anabiosis inducers, increased in response to heat shock. AHB redistribution between cells and culture liquid occurred in the course of stress and after stress. In micrococci exposed to heat shock, an increase in the AHB concentration both in cells and culture liquid is likely a defense reaction of stress resistance. This conclusion was confirmed in the experiments with the addition 30 min before the heat shock of a chemical analogue of the anabiosis inducer, C7-AHB (12 mM), which protected M. luteus cells so that their intense growth was observed after shock without any lag. The protective effect of AHB is a result of their ability to form complexes with enzyme macromolecules and stabilize them. The data obtained extend the knowledge of the stress-protective functions of low-molecular-weight autoregulators and of the role of intercellular communications in the stress response of bacterial cultures.  相似文献   

3.
Abstract Micrococcus luteus starved for 2–7 months in spent medium following growth to stationary phase in batch culture exhibited a culturability (as estimated by direct plating on nutrient agar plates) of < 0.001%. However, following a lag, some 70% of the cells could be lysed upon inoculation into and cultivation in fresh lactate minimal medium containing penicillin, showing the capability of a significant portion of the cells at least to enlarge (and thus potentially to resuscitate). When the viable cell count was estimated using the most probable number method, by incubation of high dilutions of starved cells in liquid growth media, the number of culturable or resuscitable cells was very low, and little different from the viable cell count as assessed by plating on solid media. However, the apparent viability of these populations evidenced with the most probable number method was 1000–100 000-fold greater when samples were diluted into liquid media containing supernatants taken from the stationary phase of batch cultures of the organism, suggesting that viable cells can produce a factor which stimulates the resuscitation of dormant cells. Both approaches show, under conditions in which the growth of a limited number of viable cells during resuscitation is excluded, that a significant portion of the apparently non-viable cell population in an extended stationary phase is dormant, and not dead.  相似文献   

4.
A simple and accurate method for determining the distribution of sizes of single cells and aggregates of Azotobacter vinelandii by image analysis has been developed. A staining procedure using methylene blue helps to enhance the contrast between aggregates and background without altering aggregate size distribution. Sample dilution affected the distribution of the population and therefore should be avoided. Mixing and aeration conditions during culture play an important role in the aggregation of A. vinelandii. Cells grown under mild mixing conditions (unbaffled flasks) presented a thick slime layer and formed aggregates of up to 35 microm of average equivalent diameter. In contrast, under strong agitation conditions (baffled flasks) practically no aggregates were formed throughout cultivation. The method described can be used for the characterization of aggregation of other microbial cultures.  相似文献   

5.
6.
Embryogenic suspension cultures of Ipomoea batatas Poir. contain heterogeneous populations of discrete cellular units. In order to optimize embryo production, a study was conducted to identify the embryogenic fraction of such cultures. Suspension cultures were fractionated with sieves of 1000, 710, 500, 355, 250, 180, 125, 90 and 63m mesh openings and the composition of each fraction was determined. Cellular units larger than 355 m were primarily calli and made up 75% of the total mass of cultures in the stationary phase of growth. These calli were composed of embryogenic and non-embryogenic subunits, and 98% of the embryogenic subunits measured 355–1000 m. Calli and embryogenic calli subunits produced clusters of embryos at various stages of development upon transfer to liquid or solidified media without 2,4-D. The 125–355 m fraction of suspension cultures was composed of cell aggregates of which 20% were embryogenic. The embryogenic cell aggregates produced single globular embryos upon transfer to liquid media containing 0 or 1 M 2,4-D. The 63–125 m fraction of suspension cultures contained only 2% of embryogenic cell aggregates. It can be inferred from our results that the embryogenic fraction of cultures was essentially represented in calli, and that proliferation of the embryogenic fraction occurred through the separation of embryogenic cell aggregates from larger calli when cultures approached their stationary growth phase.Abbreviations and definitions cellular units single cells, cell aggregates, and calli - cell aggregates discrete associations of cells - calli association of cell aggregates - embryogenic cell aggregates yellow aggregates of cytoplasmic cells which have the potential to produce embryogenic calli or embryos [3] - non-embryogenic cell aggregates white aggregates of vacuolated cells [3] - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid  相似文献   

7.
We have developed a multiwell-based protein aggregation assay to study the kinetics of insulin adsorption and aggregation on hydrophobic surfaces and to investigate the molecular mechanisms involved. Protein-surface interaction progresses in two phases: (1) a lag phase during which proteins adsorb and prefibrillar aggregates form on the material surface and (2) a growth phase during which amyloid fibers form and then are progressively released into solution. We studied the effect of three bacterial chaperones, DnaK, DnaJ, and ClpB, on insulin aggregation kinetics. In the presence of ATP, the simultaneous presence of DnaK, DnaJ, and ClpB allows good protection of insulin against aggregation. In the absence of ATP, DnaK alone is able to prevent insulin aggregation. Furthermore, DnaK binds to insulin adsorbed on hydrophobic surfaces. This process is slowed in the presence of ATP and can be enhanced by the cochaperone DnaJ. The peptide LVEALYL, derived from the insulin B chain, is known to promote fast aggregation in a concentration- and pH-dependent manner in solution. We show that it also shortens the lag phase for insulin aggregation on hydrophobic surfaces. As this peptide is also a known DnaK substrate, our data indicate that the peptide and the chaperone might compete for a common site during the process of insulin aggregation on hydrophobic surfaces.  相似文献   

8.
It was found that the growth of Rhodococcus rhodochrous cells in modified Saton's medium strongly depends on the rate of culture agitation in the flask: an agitation at 250 rpm in flasks with baffles stops cell multiplication, whereas slight agitation leads to pronounced culture growth. The growth retardation phenomenon was reversible and did not manifest itself in exponential-phase cultures or when the cells were grown in a rich medium; furthermore, it was not connected with the degree of culture aeration. When agitated at a moderate rate, the bacterial cells formed aggregates in the lag phase, which broke up into single cells in the exponential phase. The inhibitory effect of vigorous agitation was removed by the addition to the medium of the supernatant (SN) of a log-phase culture grown in the same medium with moderate agitation. Vigorous agitation is thought to interfere with the cell contacts, whose establishment is necessary for the development of an R. rhodochrous culture in a poor medium, which occurs in the form of (micro) cryptic growth. When grown in modified Saton's medium, R. rhodochrous cells were capable of transition, in the prolonged stationary phase, to a resting and transiently nonculturable state. Such cells could be resuscitated by incubation in a liquid medium with the addition of the supernatant or the Rpf secreted protein. The formation of transiently nonculturable cells was only possible under the conditions of a considerable agitation rate (250-300 rpm), which prevented secondary (cryptic) growth of the culture. This circumstance indicates the importance of intercellular contacts not only for the initiation of growth but also for the transition of the bacteria to a dormant state.  相似文献   

9.
The formation of polypeptide aggregates represents a nucleated polymerization reaction in which an initial nucleation event (lag phase) is followed by the extension of newly formed nuclei into larger aggregates, including fibrils (growth phase). The efficiencies of these reactions relate to the lag time (lag phase) and to the rate of aggregation (growth phase), which can be determined from experimental aggregation curves. Here we present a mutagenic analysis in which we replace valine 18 of the Alzheimer's Abeta (1-40) peptide with 17 different amino acids and determine its effect on the lag time, and therefore, on the propensity of nucleation. Comparison with various physico-chemical properties shows that nucleation is affected in a predictable manner depending on the beta-sheet propensity and hydrophobicity of residue 18. In addition, we observe a direct proportionality between the lag time and the rate of aggregation. These data imply that the two reactions, nucleation and polymerization, are governed by very similar physicochemical principles and that they involve the formation of the same types of noncovalent interactions.  相似文献   

10.
AIM: To characterize the expression of coaggregation between Blastomonas natatoria 2.1 and Micrococcus luteus 2.13 following growth in liquid culture, on agar and in an artificial biofilm matrix composed of poloxamer hydrogel. METHODS AND RESULTS: The ability of B. natatoria 2.1 and M. luteus 2.13 to coaggregate with one another was assessed following growth in liquid culture as colonies on agar or within a poloxamer hydrogel matrix. In all these environments a cycle of gain and loss of coaggregation occurred when the two cell types were aged simultaneously, with optimum expression occurring in early stationary phase. Blastomonas natatoria 2.1 cells only coaggregated maximally after entry into stationary phase. Conversely, M. luteus 2.13 cells only coaggregated in exponential phase and early stationary phase and coaggregation ability was lost in late stationary phase. Maximal coaggregation therefore only occurred between the two strains if both were in early stationary phase, when the surface properties of the two cell types were optimal for coaggregation. CONCLUSION: In addition to occurring between cells grown in liquid culture, coaggregation between aquatic bacteria occurs after growth as a biofilm on agar and in an artificial biofilm matrix in poloxamer. Under all conditions, the B. natatoria 2.1 coaggregation adhesin and complementary receptor on M. luteus 2.13 were only expressed simultaneously during early stationary phase.  相似文献   

11.
Scale-up of a myoblast culture process   总被引:3,自引:0,他引:3  
The effects of different types of cell carriers, strategies for cell transfer on carriers, and of several fusion inhibitors on the growth kinetics of primary human myoblasts culture were studied in order to develop a bioprocess suitable for the treatment of Duchenne muscular dystrophy based on the transplantation of unfused cells. Our results indicate that myoblast production is larger on Cytodex 1 and 3 than on polypropylene or polyester fabrics and on a commercial porous macrocarrier. Myoblast growth conditions with Cytodex 1 were further investigated to establish the bioprocess operating conditions. It was found that microcarrier density of 3 g DW l(-1), inoculum density of 2x10(5) cells ml(-1), and continuous agitation speed of 30-rpm result in final myoblast production comparable to static cultures. However, for all the culture conditions used, myoblasts growth kinetics exhibited a lag phase that lasted a minimum of 1 week prior to growth, the end of the lag phase correlating with the appearance of microcarrier aggregates. Based on this observation, we propose that aggregation promotes cell growth by offering a network of very large inter-particular pores that protect cells from mechanical stress. We took advantage of the presence of these aggregates for the scale-up of the culture process. Indeed, using myoblast-loaded microcarrier-aggregates instead of myoblast suspension to inoculate a fresh suspension of microcarriers significantly reduced the duration of the lag phase and allowed the scale-up of the bioprocess at the 500-ml scale. In order to ensure the production of unfused myoblasts, the efficiency of five different fusion inhibitors was investigated. Only calpeptin (9.1 microg ml(-1)) significantly inhibited the fusion of the myoblasts, while TGFbeta (50 ng ml(-1)) and LPA (10 microg ml(-1)) increased myoblasts growth but did not affect fusion, sphingosine (30 microg ml(-1)) induced a 50% death and NMMA (25 microg ml(-1)) had no effect on either growth or fusion. Finally, transplantation trials on severe combined immunodeficient mice showed that microcarrier-cultured human myoblasts grown using the optimized bioprocess resulted in grafts as successful as myoblasts grown in static cultures. The bioprocess, therefore, prove to be suitable for the large-scale production of myoblasts required for muscular dystrophy treatment.  相似文献   

12.
We have shown that 10 microM Cd2+ in the growth medium can induce resistance to subsequent heat treatment in E. coli B/r. Resistance was shown by cells during an extended lag phase and, especially, during log phase. The results contrast with the effect of Cd2+ exposure on radiation lethality, for which sensitization was previously reported in cells from lag and stationary phase cultures.  相似文献   

13.
The application of DNA flow cytometry (FCM) for analysis of sodium butyrate-induced intercellular adhesion in human carcinoma (HeLa S3) cell cultures is described. To prepare cell suspensions for FCM, the monolayers of cells were treated with medium containing 10% serum, 0.2% non-ionic detergent Triton X-100 and 1 μg/ml DNA fluorochrome 4,6′-diamidino-2-phenylindole (DAPI). Total numbers of single cells, and aggregates containing two, three, four or more cells, were determined from DNA histograms. In cultures treated with 5 mM butyrate for 16 h, more than 80% of the cells were aggregated. Intercellular adhesion began to appear 8 h after addition of butyrate, was maximal at 16–24 h and stable in the presence of butyrate, but disappeared 24 h after its removal. Treatment with EDTA (0.2%) dissociated only 50%, whereas trypsin (0.1%) separated all cell aggregates into single cells. Actinomycin D (actD) (0.5 μg/ml) prevented cell adhesion while blocking of cells in S phase with 250 μM 5-fluorouracil or 10 μM methotrexate did not interfere with aggregation. The number of cell aggregates estimated from DNA histograms of butyrate-treated HeLa S3 cultures was the same after staining with DAPI in the presence of Triton X-100 or after vital staining with Hoechst 33342. The DNA content was used as a marker to estimate the cellular composition of aggregates in mixed cultures of HeLa S3 cells and human fibroblasts (U cells). Intercellular adhesion in these cultures was seen only between HeLa S3 cells, indicating specificity of butyrate-induced cell aggregation. FCM provides fast automatic measurement of cell aggregate formation, estimates frequency of aggregates containing different cell numbers, shows participation of cells at different cycle phases in aggregates, and allows the detection of homotypic from heterotypic cell aggregates if the interacting cells have different DNA ploidy.  相似文献   

14.
We have investigated the aggregation of protein L in 25% (vol/vol) TFE and 10 mM HCl. Under both conditions, aggregates adopt a fibrillar structure and bind dyes Congo Red and Thioflavin T consistent with the presence of amyloid fibrils. The kinetics of aggregation in 25% TFE suggest a linear-elongation mechanism with critical nucleus size of either two or three monomers. Aggregation kinetics in 10 mM HCl show a prolonged lag phase prior to a rapid increase in aggregation. The lag phase is time-dependent, but the time dependence can be eliminated by the addition of pre-formed seeds. Disaggregation studies show that for aggregates formed in TFE, aggregate stability is a strong function of aggregate age. For example, after 200 min of aggregation, 40% of the aggregation reaction is irreversible, while after 3 days over 60% is irreversible. When the final concentration of the denaturant, TFE, is reduced from 5% to 0, the amount of reversible aggregation doubles. Disaggregation studies of aggregates formed in TFE and 10 mM HCl reveal a complicated effect of pH on aggregate stability.  相似文献   

15.
The aggregation of dissociated cells from chick blastoderms at Hamburger and Hamilton stages 1–5 was studied. Aggregation was measured during the first 4 h of culture by determination of the proportion of single cells in the medium. No difference in aggregation was found when cells dissociated by either trypsin or EDTA were studied. Similarly the presence or absence of serum in the medium had no appreciable effect on early phases of aggregation, although at 24 h and thereafter, aggregate size was reduced in serum-free cultures. It was found that at all of the stages studied, cells aggregate and sort out into two groups. One group forms a continuous phase of loosely associated cells while the other segregates into several localised areas of closely associated cells within the aggregate. Examination of aggregates up to 7 days in culture showed progressive differentiation within each phase and several identifiable cell types were observed. Basal laminae were present at the boundary between the compact phase and the loose phase.  相似文献   

16.
In both natural and artificial environments, bacteria predominantly grow in biofilms, and bacteria often disperse from biofilms as freely suspended single-cells. In the present study, the formation and dispersal of planktonic cellular aggregates, or ‘suspended biofilms’, by Pseudomonas aeruginosa in liquid batch cultures were closely examined, and compared to biofilm formation on a matrix of polyester (PE) fibers as solid surface in batch cultures. Plankton samples were analyzed by laser-diffraction particle-size scanning (LDA) and microscopy of aggregates. Interestingly, LDA indicated that up to 90% of the total planktonic biomass consisted of cellular aggregates in the size range of 10–400 µm in diameter during the growth phase, as opposed to individual cells. In cultures with PE surfaces, P. aeruginosa preferred to grow in biofilms, as opposed to planktonicly. However, upon carbon, nitrogen or oxygen limitation, the planktonic aggregates and PE-attached biofilms dispersed into single cells, resulting in an increase in optical density (OD) independent of cellular growth. During growth, planktonic aggregates and PE-attached biofilms contained densely packed viable cells and extracellular DNA (eDNA), and starvation resulted in a loss of viable cells, and an increase in dead cells and eDNA. Furthermore, a release of metabolites and infective bacteriophage into the culture supernatant, and a marked decrease in intracellular concentration of the second messenger cyclic di-GMP, was observed in dispersing cultures. Thus, what traditionally has been described as planktonic, individual cell cultures of P. aeruginosa, are in fact suspended biofilms, and such aggregates have behaviors and responses (e.g. dispersal) similar to surface associated biofilms. In addition, we suggest that this planktonic biofilm model system can provide the basis for a detailed analysis of the synchronized biofilm life cycle of P. aeruginosa.  相似文献   

17.
A study of aggregation of the retinal cells of 8 and 14 day old chick embryos has revealed two phases in this process. The first phase includes the decrease in the concentration of single cells and the increase in the concentration of aggregates. During the second phase the concentration of aggregates falls at the expense of fusion of smaller aggregates into larger ones. The rate of aggregation at both these phases increases with the initial density of cells and decreases with the age of donor embryos and at a suboptimal temperature of cultivation. Aggregation during the first phase does not depend on the presence in the culture medium of divalent cations and colchicine, the level of protein and RNA synthesis in the cells, whereas aggregation during the second phase depends on all these factors. Comparison of these results with the published data suggests that the retinal cell aggregation during the second phase, unlike the first one, is based on the specific adhesiveness of the cells, which is realized via adhesion molecules resynthesized at the cell surface.  相似文献   

18.
In Quantitative Microbial Risk Assessment, it is vital to understand how lag times of individual cells are distributed over a bacterial population. Such identified distributions can be used to predict the time by which, in a growth-supporting environment, a few pathogenic cells can multiply to a poisoning concentration level.We model the lag time of a single cell, inoculated into a new environment, by the delay of the growth function characterizing the generated subpopulation. We introduce an easy-to-implement procedure, based on the method of moments, to estimate the parameters of the distribution of single cell lag times. The advantage of the method is especially apparent for cases where the initial number of cells is small and random, and the culture is detectable only in the exponential growth phase.  相似文献   

19.
The effect of cell density and attachment on starvation survival and recovery was determined using luminometry to measure activity of a lux -marked strain of Pseudomonas fluorescens MON787. Bioluminescence was found to be a sensitive indicator of in situ activity of P. fluorescens MON787 in soil. The activity of a bacterial inoculum could be monitored during growth in soil, and was found to correlate with an increase in cell numbers. Luminescence could detect decreasing activity of P. fluorescens during starvation in soil, and recovery of activity and cell numbers following exposure to starvation and matric potential stress. The effect of localised cell density and attachment in soil on recovery from lag phase after nutrient addition was investigated and compared to recovery of starved liquid cultures. Nutrient addition to starved P. fluorescens in soil or liquid medium resulted in an immediate recovery of activity, followed by a second increase in luminescence after 5 h. Cells exposed to both starvation and matric potential stress in soil did not show a detectable immediate increase of activity, but required a 5-h lag phase before recovery of both activity and cell growth. The lag phase values were not significantly different over a range of localised cell densities. This suggests that cell density of P. fluorescens in the range tested is not a factor which affects recovery of soil bacteria from starvation.  相似文献   

20.
Light emission from Photobacterium phosphoreum was analysed during cell growth on an agar plate from a single cell to colony formation. Temporal analysis of image intensified light was set so that a quadratic window covered a single cell. Intensity of light emission from a single cell through colony formation showed an initial decrease, a prolonged lag phase, and then a rapid increase. These responses on an agar plate were similar to those from liquid cultures. The image analysis showed repeated bursts of light emission in the phases when light was increasing and decreasing. Statistical analysis of light emission also emphasized the presence of bursts of light emission, suggesting the metabolic synchronism of luciferase reactions in either a single cell or synchronously divided cells. The repetitive bursts of light occurred in a single cell and continued during the growth phase in which the cell population and the light emission was increasing. In a single cell, however, periodicity of light emission was not defined directly from fast Fourier transformation, although it was indicated on oscillation of mean level of fluctuated light emission, at initial phase of culture on agar plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号