首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of activated H-Ras induces a unique form of non-apoptotic cell death in human glioblastoma cells and other specific tumor cell lines. The major cytopathological features of this form of death are the accumulation of large phase-lucent, LAMP1-positive, cytoplasmic vacuoles. In this study we sought to determine if induction of cytoplasmic vacuolation a) depends on Ras farnesylation, b) is specific to H-Ras, and c) is mediated by signaling through the major known Ras effector pathways. We find that the unusual effects of activated H-Ras depend on farnesylation and membrane association of the GTPase. Both H-Ras(G12V) and K-Ras4B(G12V) stimulate vacuolation, but activated forms of Cdc42 and RhoA do not. Amino acid substitutions in the Ras effector domain, which are known to selectively impair its interactions with Raf kinase, class-I phosphatidylinositide 3-kinase (PI3K), or Ral nucleotide exchange factors, initially pointed to Raf as a possible mediator of cell vacuolation. However, the MEK inhibitor, PD98059, did not block the induction of vacuoles, and constitutively active Raf-Caax did not mimic the effects of Ras(G12V). Introduction of normal PTEN together with H-Ras(G12V) into U251 glioblastoma cells reduced the PI3K-dependent activation of Akt, but had no effect on vacuolation. Finally, co-expression of H-Ras(G12V) with a dominant-negative form of RalA did not suppress vacuolation. Taken together, the observations indicate that Ras activates non-conventional and perhaps unique effector pathways to induce cytoplasmic vacuolation in glioblastoma cells. Identification of the relevant signaling pathways may uncover specific molecular targets that can be manipulated to activate non-apoptotic cell death in this type of cancer.  相似文献   

2.
Filipiak M  Tylko G  Pyza E 《Biometals》2012,25(3):507-516
Zinc is an essential trace element in cells. However, its high level in cytoplasm promotes activation of stress signaling pathways and may lead to cell death. In the present study we used Drosophila melanogaster blood cells (haemocytes), obtained from the third instar larvae, to study the effects of high concentrations of Zn(2+) on programmed cell death (PCD). We analyzed the activity of caspases, the level of caspase inhibitor protein DIAP1 and metallothioneins, as well as calcium concentrations and activity of mitochondria in haemocytes exposed to 0.35 and 1.7 mM concentrations of Zn. The obtained results showed that rapid increase of [Zn(2+)]( i ) in the cytoplasm up-regulates metallothionein MtnB but not MtnA gene expression in cells treated with Zn(2+) in both concentrations. Excess of Zn(2+) also induced activation of the initiator caspase Dronc, associated with the mitochondrial pathway of PCD, and the effector caspase DrICE. In turn, the activity of receptor-regulated Dredd caspase was not changed. The level of DIAP1 decreased significantly in haemocytes in the presence of high Zn(2+) concentration in comparison to untreated cells. Moreover, mitochondrial membrane potential was significantly decreased after exposure to Zn ions. These results indicate that high concentration of Zn(2+) in the cytoplasm of haemocytes induces PCD via a mitochondrial pathway and that caspases play a pivotal role in this process.  相似文献   

3.
Asiatic acid (AA), a triterpene, is known to be cytotoxic to several tumor cell lines. AA induces dose- and time-dependent cell death in U-87 MG human glioblastoma. This cell death occurs via both apoptosis and necrosis. The effect of AA may be cell type-specific as AA-induced cell death was mainly apoptotic in colon cancer RKO cells. AA-induced glioblastoma cell death is associated with decreased mitochondrial membrane potential, activation of caspase-9 and -3, and increased intracellular free Ca2+. Although treatment of glioblastoma cells with the caspase inhibitor zVAD-fmk completely abolished AA-induced caspase activation, it did not significantly block AA-induced cell death. AA-induced cell death was significantly prevented by an intracellular Ca2+ inhibitor, BAPTA/AM. Taken together, these results indicate that AA induces cell death by both apoptosis and necrosis, with Ca2+-mediated necrotic cell death predominating.  相似文献   

4.
Oncogenic Ras induces cells to undergo apoptosis after inhibition of protein kinase C (PKC) activity. The integration of differential signaling pathways is required for full execution of apoptosis. In this study, we used Jurkat as well as Fas/FADD-defective cell lines expressing v-ras to determine the upstream elements required for activation of the caspase cascade in PKC/Ras-mediated apoptosis. During this Ras-induced apoptotic process, caspase-8 was activated, possibly through its binding to Fas-associated death domain (FADD), in Jurkat/ras and Jurkat/Fas(m)/ras cells but not in Jurkat/FADD(m)/ras cells. c-Jun NH(2)-terminal kinase (JNK) was activated in all three cell lines expressing ras in response to apoptotic stimulation. Suppression of JNK by dn-JNK1 blocked the interaction of FADD and caspase-8 and partially protected Jurkat/ras and Jurkat/Fas(m)/ras cells from apoptosis. However, dn-JNK1 had no effect on PKC/Ras-induced apoptosis in Jurkat/FADD(m)/ras cells. The results indicate that FADD/caspase-8 signaling is involved in PKC/Ras-mediated apoptosis, and JNK may be an upstream effector of caspase activation.  相似文献   

5.
In Saccharomyces cerevisiae, cAMP/pKA pathway plays a major role in metabolism, stress resistance and proliferation control. cAMP is produced by adenylate cyclase, which is activated both by Gpr1/Gpa2 system and Ras proteins, regulated by Cdc25/Sdc25 guanine exchange factors and Ira GTPase activator proteins. Recently, both Ras2 and Cdc25 RasGEF were reported to localize not only in plasma membrane but also in internal membranes. Here, the subcellular localization of Ras signaling complex proteins was investigated both by fluorescent tagging and by biochemical cell membrane fractionation on sucrose gradients. Although a consistent minor fraction of Ras signaling complex components was found in plasma membrane during exponential growth on glucose, Cdc25 appears to localize mainly on ER membranes, while Ira2 and Cyr1 are also significantly present on mitochondria. Moreover, PKA Tpk1 catalytic subunit overexpression induces Ira2 protein to move from mitochondria to ER membranes. These data confirm the hypothesis that different branches of Ras signaling pathways could involve different subcellular compartments, and that relocalization of Ras signaling complex components is subject to PKA control.  相似文献   

6.
This study was to identify the signaling pathways for the induction of HL-60 cell apoptosis by Cordyceps sinensis mycelium extract (CSME). CSME at 25 mug/ml induced nuclear fragmentation and DNA degradation, two hallmark events of apoptosis, in the HL-60 cells within 12-24 hrs of treatment. Concomitantly, several major events in the mitochondrial signal pathway occurred, including the loss of MTP (DeltaPsi(m)), cytochrome c release into the cytoplasm, the decrease in Bcl-2 protein level, the translocation of Bax protein from cytoplasm into mitochondria, and the activation of caspase-2, -3, and -9, but caspase-8, the initiator caspase in the death receptor pathway, was not activated. These results suggest that CSME induces apoptosis in HL-60 cell through the mitochondrial pathway rather than the death receptor pathway.  相似文献   

7.
Flagellin, the primary structural component of bacterial flagella, is recognized by Toll-like receptor 5 (TLR5) present on the basolateral surface of intestinal epithelial cells. Utilizing biochemical assays of proinflammatory signaling pathways and mRNA expression profiling, we found that purified flagellin could recapitulate the human epithelial cell proinflammatory responses activated by flagellated pathogenic bacteria. Flagellin-induced proinflammatory activation showed similar kinetics and gene specificity as that induced by the classical endogenous proinflammatory cytokine TNF-alpha, although both responses were more rapid than that elicited by viable flagellated bacteria. Flagellin, like TNF-alpha, activated a number of antiapoptotic mediators, and pretreatment of epithelial cells with this bacterial protein could protect cells from subsequent bacterially mediated apoptotic challenge. However, when NF-kappaB-mediated or phosphatidylinositol 3-kinase/Akt proinflammatory signaling was blocked, flagellin could induce programmed cell death. Consistently, we demonstrate that flagellin and viable flagellate Salmonella induces both the extrinsic and intrinsic caspase activation pathways, with the extrinsic pathway (caspase 8) activated by purified flagellin in a TLR5-dependant fashion. We conclude that interaction of flagellin with epithelial cells induces caspase activation in parallel with proinflammatory responses. Such intertwining of proinflammatory and apoptotic signaling mediated by bacterial products suggests roles for host programmed cell death in the pathogenesis of enteric infections.  相似文献   

8.
An understanding of the molecular pathways defining the susceptibility of prostate cancer, especially refractory prostate cancer, to apoptosis is the key for developing a cure for this disease. We previously demonstrated that up-regulating Ras signaling, together with suppression of protein kinase C (PKC), induces apoptosis. Dysregulation of various intracellular signaling pathways, including those governed by Ras, is the important element in the development of prostate cancer. In this study, we tested whether it is possible to modulate the activities of these pathways and induce an apoptotic crash among them in prostate cancer cells. Our data showed that DU145 cells express a high amount of JNK1 that is phosphorylated after endogenous PKC is suppressed, which initiates caspase 8 cleavage and cytochrome c release, leading to apoptosis. PC3 and LNCaP cells contain an activated Akt. The inhibition of PKC further augments Akt activity, which in turn induces ROS production and the accumulation of unfolded proteins in the endoplasmic reticulum, resulting in cell death. However, the concurrent activation of JNK1 and Akt, under the condition of PKC abrogation, dramatically augment the magnitude of apoptosis in the cells. Thus, our study suggests that Akt, JNK1, and PKC act in concert to signal the intracellular apoptotic machinery for a full execution of apoptosis in prostate cancer cells.  相似文献   

9.
Trafficking of H-Ras was examined to determine whether it can enter cells through clathrin-independent endocytosis (CIE). H-Ras colocalized with the CIE cargo protein, class I major histocompatibility complex, and it was sequestered in vacuoles that formed upon expression of an active mutant of Arf6, Q67L. Activation of Ras, either through epidermal growth factor stimulation or the expression of an active mutant of Ras, G12V, induced plasma membrane ruffling and macropinocytosis, a stimulated form of CIE. Live imaging of cells expressing H-RasG12V and fluorescent protein chimeras with pleckstrin homology domains that recognize specific phosphoinositides showed that incoming macropinosomes contained phosphatidylinositol 4,5-bisphosphate (PIP(2)) and phosphatiylinositol 3,4,5-trisphosphate (PIP(3)). PIP(2) loss from the macropinosome was followed by the recruitment of Rab5, a downstream target of Ras, and then PIP(3) loss. Our studies support a model whereby Ras can signal on macropinosomes that pass through three distinct stages: PIP(2)/PIP(3), PIP(3)/Rab5, and Rab5. Vacuoles that form in cells expressing Arf6Q67L trap Ras signaling in the first stage, recruiting the active form of the Ras effectors extracellular signal-regulated kinase and protein kinase B (Akt) but not Rab5. Arf6 stimulation of macropinocytosis also involves passage through the distinct lipid phases, but recruitment of Akt is not observed.  相似文献   

10.
Intracellular targeting of the Pseudomonas aeruginosa toxins, such as exoenzyme S (ExoS), cause cell death, as well as morphological and physiological changes in various tissue culture cells and animal models. In this report we have investigated the mechanism behind ExoS-mediated cell death. In order to address this issue, we have used cell lines expressing activated forms of various components of the Ras signalling pathway in order to evaluate the importance of the Ras pathway for viability and survival upon ExoS infection. Here we show that activated Ras is able to protect cells against cell death, regardless of whether it has been ADP-ribosylated by ExoS. Further, an activated form of protein kinase B (PKB)/Akt also leads to decreased level of cell death in response to ExoS infection, indicating that an important ExoS survival target is located upstream of Raf-1 and PKB/Akt. Moreover, we show that ExoS infection inhibits phosphorylation of FOXO3a, and induces caspase-3 activity, which are hallmarks for induction of cell death. In conclusion, we suggest that Ras proteins are an important cellular target for the P. aeruginosa toxin ExoS, which induces cell death during pathogenesis as a means of defending the bacterium against eukaryotic phagocytosis.  相似文献   

11.
12.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

13.
Apoptosis plays an important role in regulating development and homeostasis of the immune system, yet the elements of the signaling pathways that control cell death have not been well defined. When expressed in Jurkat T cells, an activated form of the small GTPase Cdc42 induces cell death exhibiting the characteristics of apoptosis. The death response induced by Cdc42 is mediated by activation of a protein kinase cascade leading to stimulation of c-Jun amino terminal kinase (JNK). Apoptosis initiated by Cdc42 is inhibited by dominant negative components of the JNK cascade and by reagents that block activity of the ICE protease (caspase) family, suggesting that stimulation of the JNK kinase cascade can lead to caspase activation. The sequence of morphological events observed typically in apoptotic cells is modified in the presence of activated Cdc42, suggesting that this GTPase may account for some aspects of cytoskeletal regulation during the apoptotic program. These data suggest a means through which the biochemical and morphological events occurring during apoptosis may be coordinately regulated.  相似文献   

14.
Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis   总被引:20,自引:0,他引:20  
Although activated Ras proteins are usually associated with driving growth and transformation, they may also induce senescence, apoptosis, and terminal differentiation. The subversion of these anti-neoplastic effects during Ras-dependent tumor development may be as important as the acquisition of the pro-neoplastic effects. None of the currently identified potential Ras effector proteins can satisfactorily explain the apoptotic action of Ras. Consequently, we have sought to identify novel Ras effectors that may be responsible for apoptosis induction. By examining the EST data base, we identified a potential Ras association domain in the tumor suppressor RASSF1. We now show that RASSF1 binds Ras in a GTP-dependent manner, both in vivo and directly in vitro. Moreover, activated Ras enhances and dominant negative Ras inhibits the cell death induced by transient transfection of RASSF1 into 293-T cells. This cell death appears to be apoptotic in nature, as RASSF1-transfected 293-T cells exhibit membrane blebbing and can be rescued by the addition of a caspase inhibitor. Thus, the RASSF1 tumor suppressor may serve as a novel Ras effector that mediates the apoptotic effects of oncogenic Ras.  相似文献   

15.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

16.
The adaptor protein FADD directly, or indirectly via another adaptor called TRADD, recruits caspase 8 to death receptors of the tumor necrosis factor receptor family. Consequentially, a dominant-negative mutant (FADD-DN, which consists only of the FADD death domain) that binds to receptors but cannot recruit caspase 8 has been widely used to inhibit apoptosis by various stimuli that work via death receptors. Here, we show that FADD-DN also has another cell type- and cancer-dependent activity because it induces apoptosis of normal human prostate epithelial cells but not normal prostate stromal cells or prostate cancer cells. This activity is independent of FADD-DN's ability to bind to three known interacting proteins, Fas, TRADD or RIP suggesting that it is distinct from FADD's functions at activated death receptors. FADD-DN induces caspase activation in normal epithelial cells as demonstrated using a Fluorescence Resonance Energy Transfer assay that measures caspase activity in individual living cells. However, caspase-independent pathways are also implicated in FADD-DN-induced apoptosis because caspase inhibitors were inefficient at preventing prostate cell death. Therefore, the death domain of FADD has a previously unrecognized role in cell survival that is epithelial-specific and defective in cancer cells. This FADD-dependent signaling pathway may be important in prostate carcinogenesis.  相似文献   

17.
Earlier reports have shown that herpes simplex virus 1 (HSV-1) mutants induce programmed cell death and that wild-type HSV blocks the execution of the cell death program triggered by viral gene products, by the effectors of the immune system such as the Fas and tumor necrosis factor pathways, or by nonspecific stress agents such as either osmotic shock induced by sorbitol or thermal shock. A report from this laboratory showed that caspase inhibitors do not block DNA fragmentation induced by infection with the HSV-1 d120 mutant. To identify the events in programmed cell death induced and blocked by HSV-1, we examined cells infected with wild-type virus or the d120 mutant or cells infected and exposed to sorbitol. We report that: (i) the HSV-1 d120 mutant induced apoptosis by a caspase-3-independent pathway inasmuch as caspase 3 was not activated and DNA fragmentation was not blocked by caspase inhibitors even though the virus caused cytochrome c release and depolarization of the inner mitochondrial membrane. (ii) Cells infected with wild-type HSV-1 exhibited none of the manifestations associated with programmed cell death assayed in these studies. (iii) Uninfected cells exposed to osmotic shock succumbed to caspase-dependent apoptosis inasmuch as cytochrome c was released, the inner mitochondrial potential was lost, caspase-3 was activated, and chromosomal DNA was fragmented. (iv) Although caspase-3 was activated in cells infected with wild-type HSV-1 and exposed to sorbitol, cytochrome c outflow, depolarization of the inner mitochondrial membrane, and DNA fragmentation were blocked. We conclude that although d120 induces apoptosis by a caspase-3-independent pathway, the wild-type virus blocks apoptosis induced by this pathway and also blocks the caspase-dependent pathway induced by osmotic shock. The block in the caspase-dependent pathway may occur downstream of caspase-3 activation.  相似文献   

18.
Gil J  García MA  Esteban M 《FEBS letters》2002,529(2-3):249-255
The double-stranded RNA-dependent protein kinase (PKR) induces apoptosis by activation of the FADD/caspase 8 pathway. Here we show that upon PKR expression, caspase 9 is processed and activated, correlating with the translocation of cytochrome c to the cytoplasm and breakdown of mitochondrial potential upon Bax insertion. However, treatment of cells with an inhibitor of caspase 9 could not prevent PKR-induced apoptosis. During PKR-induced apoptosis, caspase 9 is activated downstream of caspase 8. Our findings revealed that caspase 9, although dispensable, is a mediator of PKR-induced cell death.  相似文献   

19.
Retinoids play an important role in the regulation of cell growth and death. Synthetic retinoid CD437 reportedly induces apoptosis in various cancer cell lines. However, the mechanism of inducing apoptosis in hepatocellular carcinoma (HCC) cells by this agent remains to be clarified. In this study, we investigated the signaling pathway by which CD437 induces apoptosis in HCC cell lines. Apoptosis of six human HCC cell lines was induced by treatment with CD437. Caspase-3 and -9 were activated by CD437, suggesting that the apoptosis is mediated by mitochondrial pathways. Consistent with these findings, the treatment with CD437 upregulated Bax protein, downregulated Bcl-2 protein and released cytochrome c into the cytoplasm. Moreover, rhodamine123 staining revealed mitochondrial depolarization in the cells treated with CD437. These data of the present study suggest that CD437 induces apoptosis in HCC cells via mitochondrial pathways.  相似文献   

20.
Geranylgeranylacetone (GGA) induces apoptosis in human leukemia HL-60 cells in a dose- and time-dependent manner. This effect was completely prevented by the pan-caspase inhibitor z-Val-Ala-Asp(OMe) fluoromethylketone, thereby implicating the caspase cascade in the process. Prior to DNA fragmentation, GGA treatment markedly activated caspase-3(-like) proteases, which might be responsible for the observed apoptosis. In addition, GGA treatment interfered with the processing and membrane localization of Rap1 and Ras, and these changes may be a result of apoptosis. Moreover, nitric oxide donors significantly accentuated the GGA-induced apoptosis, suggesting that the apoptotic pathway induced by GGA might be regulated by a redox-sensitive mechanism. Taken together, these data suggest that the isoprenoid, GGA, is an effective inducer of apoptotic cell death in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号