首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nuclear hourglass technique (NHT) was recently introduced as a novel technique that measures the electrical nuclear envelope (NE) conductance of isolated Xenopus laevis oocyte nuclei. The main conclusion drawn from NHT work so far is that nuclear pore complexes (NPCs) of oocytes are in an electrically open state under physiological conditions, with a mean conductance of 1.7 nS per NPC. Since nuclear patch-clamp data indicate that usually NPCs are electrically closed, our work has been challenged by the notion that NHT cannot assure a high resistance seal (``gigaseal') between glass wall and NE like that required for patch-clamp experiments. Thus, NHT could have dramatically underestimated NE electrical resistance. Here we demonstrate that NHT does not require a gigaseal for accurate NE conductance measurements. In addition, we present experimental conditions where mean single NPC electrical conductance is reduced 26-fold due to electrophoretic plugging by negatively charged nucleoplasmic macromolecules. In addition, data indicate that under physiological conditions (i.e., when macromolecules are offered in the cytosolic solution) the nuclear surface is heavily folded, underestimating ``true' NE surface by a factor of 2.6. When ``true' NE surface area is taken into consideration, modified values of mean single NPC conductances of 654 pS for electrically open conditions and 25 pS for electrically plugged conditions can be calculated. We conclude that the large overall NE conductance detected with the nuclear hourglass technique in intact Xenopus laevis oocyte nuclei can be explained by the sum of single NPC conductances in the pS range, as long as open probability is high. This confirms previous patch-clamp work concerning single NPC conductance, but disagrees with the view that mean open probability of NPC channels is usually low. Received: 27 March 2001/Revised: 3 July 2001  相似文献   

2.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

3.
The O‐linked β‐N‐acetylglucosamine (O‐GlcNAc) posttranslational modification was first discovered 30 years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O‐GlcNAc and its regulation. Nonetheless, O‐GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O‐GlcNAc‐modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O‐GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine–glycine nucleoporins are heavily O‐GlcNAc‐modified. Recent experiments are beginning to provide insight into the functional implications of O‐GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O‐GlcNAc may play roles in regulating nucleocytoplasmic transport.   相似文献   

4.
体细胞核移植胚胎核重编程的研究进展   总被引:3,自引:0,他引:3  
杨正田  沈伟  邓继先 《遗传学报》2004,31(6):641-646
尽管在多种哺乳动物种系中成功制备了体细胞克隆后代,但当前的克隆技术仍有许多亟待解决的问题。体细胞核移植胚胎大多存在许多发育异常,造成了妊娠早期高流产率和出生后高死亡率。有研究认为,克隆胚胎发育障碍的一个重要的原因是供体细胞的遗传重编程不完全。哺乳动物种系中,DNA甲基化是胚胎发育期转录调节的必需步骤,除了单拷贝基因序列外,在基因组很多的区域都可以观测到克隆胚胎的异常甲基化。此外,克隆胚胎的基因印迹也存在异常。  相似文献   

5.
6.
动物核移植中核的重编程   总被引:1,自引:0,他引:1  
征月良 《生命的化学》2007,27(3):216-218
动物体细胞核能被去核卵重新编程,获得发育的全能性.在重编程过程中,核仁结构发生变化,组蛋白被修饰.端粒酶基因能被重编程,从而恢复核移植后代的端粒长度.核移植后,克隆后代出现X染色体失活.核基因能被重编程,引起基因表达改变.  相似文献   

7.
8.
9.
Nuclear shape changes are observed during a variety of developmental processes, pathological conditions, and ageing. The mechanisms underlying nuclear shape changes in the above-mentioned situations have mostly remained unclear. To address the molecular mechanism behind nuclear shape changes, we analyzed how the farnesylated nuclear envelope proteins Kugelkern and lamin Dm0 affect the structure of the nuclear membrane. We found that Kugelkern and lamin Dm0 affect nuclear shape without requiring filament formation or the presence of a classical nuclear lamina. We also could show that the two proteins do not depend on a group of selected inner nuclear membrane proteins for their localization to the nuclear envelope. Surprisingly, we found that farnesylated Kugelkern and lamin Dm0 protein constructs change the morphology of protein-free liposomes. Based on these findings, we propose that farnesylated proteins of the nuclear membrane induce nuclear shape changes by being asymmetrically inserted into the phospholipid bilayer via their farnesylated C-terminal part.  相似文献   

10.
11.
《Biophysical journal》2020,118(1):219-231
The nuclear pore complex (NPC) employs the intrinsically disordered regions (IDRs) from a family of phenylalanine-glycine-rich nucleoporins (FG-Nups) to control nucleocytoplasmic transport. It has been a long-standing mystery how the IDR-mediated mass exchange can be rapid yet selective. Here, we use a computational microscope to show that nanocompartmentalization of IDR subdomains leads to a remarkably elaborate gating structure as programmed by the amino acid sequences. In particular, we reveal a heterogeneous permeability barrier that combines an inner ring barrier with two vestibular condensates. Throughout the NPC, we find a polarized electrostatic potential and a diffuse thermoreversible FG network featuring mosaic FG territories with low FG-FG pairing fraction. Our theoretical anatomy of the central transporter sheds light into the sequence-structure-function relationship of the FG-Nups and provides a picture of nucleocytoplasmic mass exchange that allows a reconciliation of transport efficiency and specificity.  相似文献   

12.
13.
Roles of the nuclear envelope are considered in the regulation of nuclear protein import, ribonucleoprotein export, and coupling of DNA replication to the cell cycle. First, evidence is discussed that indicates that neutral and acidic amino acids can be important in nuclear localization signals as well as the widely acknowledged basic amino acids. Second, the recognition of nuclear localization signals by their receptor “importin” is discussed, focusing on the different roles of the two subunits of importin. Third, a role for the α subunit of importin in RNP export is considered together with the question of how the direction of traffic through nuclear pores is determined. The final part of this article considers evidence that the nuclear membrane prevents reinitiation of DNA replication in Xenopus eggs, by excluding a “licensing factor” that is essential for DNA replication. Replication licensing in Xenopus appears to involve several proteins including the MCM (minichromosome maintenance) complex and ORC, the origin recognition complex, which must bind before the MCM complex can bind to chromatin.  相似文献   

14.
The metalloendopeptidase nardilysin contains a putative N-terminal nuclear localization signal. The functionality of this sequence was tested with nardilysin-GFP fusion constructs. Expression in NIH3T3 cells showed approximately 90-95% of nardilysin-GFP as cytoplasmic. However, 3-6% of transfected cells showed both cytosolic and nuclear staining, while 2-4% showed predominantly nuclear staining. A nuclear localization signal mutant and an N-terminally truncated nardilysin-GFP with the nuclear localization signal deleted were completely cytoplasmic. Although endogenous nardilysin was barely detectable in the nucleus, after treatment with leptomycin B, nuclear nardilysin rose to approximately 15% and to over 25% after addition of spermine. The ability of a methionine 49 to act as the sole initiator methionine, as previously proposed, was tested by inserting a c-myc epitope between leucine28 and glycine29. Expression in HEK293 cells showed the presence of the c-myc tag, demonstrating that the enzyme can be translated from the first methionine and contains the nuclear localization signal.  相似文献   

15.
The nuclear DNA content of the emu relative to that of the chicken has been measured by microdensitometry of Feulgen-stained erythrocytes and found to be 1.236±0.028 which is within the range of values previously found for birds. The statistical method for obtaining this value and its standard error is given in full.  相似文献   

16.
17.
18.
Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures is the nucleus, which is bounded by a double membrane termed the nuclear envelope (NE). Though this NE separates the nucleoplasm and genetic material within the nucleus from the surrounding cytoplasm, it is studded throughout with portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of protein and ribonucleoprotein cargoes. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, and the NPC carries binding sites for many of the proteins that modulate and modify the cargoes as they pass across the NE. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation. All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes.Taxonomically speaking, all life on earth falls into one of two fundamental groups, the prokaryotes and the eukaryotes. The prokaryotes, the first group to evolve, are single cell organisms bounded by a single membrane. About 1.5 billion years later, a series of evolutionary innovations led to the emergence of eukaryotes. Eukaryotes have multiple inner membrane structures that allow for compartmentalization within the cell, and therefore differentiation of the cell and regulation within it. Ultimately, the greater cellular complexity of eukaryotes allowed them to adopt a multicellular lifestyle, as seen in the plants, fungi and animals of today (reviewed in Field and Dacks 2009).Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures, which gives the eukaryotes their Greek-rooted name, is the nucleus—the central “kernel” (gr. “karyo-”) of the cell. The nucleus is bounded by a double membrane termed the nuclear envelope (NE), which separates the nucleoplasm and genetic material from the surrounding cytoplasm. However the genetic material in the nucleus is not totally isolated from the rest of the cell. Studded throughout the NE are portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of cargoes. Going into the nucleus, these cargoes include inner nuclear membrane proteins and all the proteins in the nucleoplasm. Going out are RNA-associated proteins that are assembled into ribosomal subunits or messenger ribonucleoproteins (mRNPs). Once transported, the NPC must ensure these cargos are retained in their respective nuclear and cytoplasmic compartments. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, providing a powerful extra level of cellular control that is not necessary in prokaryotes. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation (reviewed in Ahmed and Brickner 2007; Hetzer and Wente 2009). All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes.  相似文献   

19.
胡炜  汪亚平  朱作言 《遗传学报》2003,30(5):485-492
目前动物克隆技术体系极待完善,其极低的成功率及克隆动物普遍存在的早衰、早天现象是阻碍研究深入进行的首要问题,其突破的关键在于对核移植后的细胞核再程序化机制的阐明。从移植核在结构上的重塑、移植核与受体卵细胞质所处的细胞周期及其相互作用、重构胚与两性胚在分子水平的变化等多方面研究表明:受体细胞质的环境对于细胞核的再程序化至关重要,处于有丝分裂各时期的细胞作为核供体一旦移植到卵母细胞后,移植核在卵质环境里将出现结构上的重塑和分子的再程序化;移植核与受体卵问细胞周期的相容性、重构胚的染色体倍性的正确与否,可能是决定重构胚发育率高低的重要因素;合子型基因激活是基因表达再程序化的关键事件之一;印记基因对于体细胞克隆动物移植核的再程序化过程可能起着非常独特的作用。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号