首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Responses of multi-units in the auditory cortex (AC) of unanaesthetized Mongolian gerbils to pure tones and to linearly frequency modulated (FM) sounds were analysed. Three types of responses to pure tones could be clearly distinguished on the basis of spectral tuning properties, response latencies and overall temporal response pattern. In response to FM sweeps these three types discharged in a temporal pattern similar to tone responses. However, for all type-1 units the latencies of some phasic response components shifted systematically as a function of range and/or speed of modulation. Measurements of response latencies to FMs revealed that such responses were evoked whenever the modulation reached a particular instantaneous frequency (Fi). Effective Fi was: (1) independent of modulation range and speed, (2) always reached before the modulation arrived at a local maximum of the frequency response function (FRF) and consequently differed for downward and upward sweeps, and (3) was correlated with the steepest slope of that FRF maximum. The three different types of units were found in discrete and separate fields or regions of the AC. It is concluded that gross temporal response properties are one of the key features distinguishing auditory cortical regions in the Mongolian gerbil. Accepted: 13 August 1997  相似文献   

2.
The characteristics of extra- and intracellular responses of neurons in the AI region were studied in experiments with unanesthetized cats. It was established that auditory cortex neurons with similar best frequencies showed different forms of responses to tones of the corresponding frequency. About 40% of the auditory cortex neurons generated on responses to tone presentation. On — off and off responses were found in 27% of the neurons. Cortical neurons (27%) in which stimulation or inhibition of impulse discharge persisted throughout tone action were assigned to the tonic type group of cells. Approximately 6% of neurons in the AI region did not respond to a tone. During intracellular recording about 85% of the neurons responded to the turning on and/or off of a tone by generating an action potential followed by an IPSI. In 96% of the cortical neurons studied the IPSPs were a constant component of the intracellular responses to a tone. It is concluded that the inhibition of the impulse activity of the given neurons is of primarily a postsynaptic origin. Neurons showing one or another form of response differ from one another in the relative intensity and time characteristics of excitatory and inhibitory processes interacting on their postsynaptic membranes. In neurons of the phasic type inhibitory processes are dominant over excitatory, while excitatory processes are predominant in neurons of the tonic type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 500–508, July–August, 1985.  相似文献   

3.
Categorical perception is a process by which a continuous stimulus space is partitioned to represent discrete sensory events. Early experience has been shown to shape categorical perception and enlarge cortical representations of experienced stimuli in the sensory cortex. The present study examines the hypothesis that enlargement in cortical stimulus representations is a mechanism of categorical perception. Perceptual discrimination and identification behaviors were analyzed in model auditory cortices that incorporated sound exposure-induced plasticity effects. The model auditory cortex with over-representations of specific stimuli exhibited categorical perception behaviors for those specific stimuli. These results indicate that enlarged stimulus representations in the sensory cortex may be a mechanism for categorical perceptual learning.  相似文献   

4.
Sparse representation of sounds in the unanesthetized auditory cortex   总被引:2,自引:0,他引:2  
How do neuronal populations in the auditory cortex represent acoustic stimuli? Although sound-evoked neural responses in the anesthetized auditory cortex are mainly transient, recent experiments in the unanesthetized preparation have emphasized subpopulations with other response properties. To quantify the relative contributions of these different subpopulations in the awake preparation, we have estimated the representation of sounds across the neuronal population using a representative ensemble of stimuli. We used cell-attached recording with a glass electrode, a method for which single-unit isolation does not depend on neuronal activity, to quantify the fraction of neurons engaged by acoustic stimuli (tones, frequency modulated sweeps, white-noise bursts, and natural stimuli) in the primary auditory cortex of awake head-fixed rats. We find that the population response is sparse, with stimuli typically eliciting high firing rates (>20 spikes/second) in less than 5% of neurons at any instant. Some neurons had very low spontaneous firing rates (<0.01 spikes/second). At the other extreme, some neurons had driven rates in excess of 50 spikes/second. Interestingly, the overall population response was well described by a lognormal distribution, rather than the exponential distribution that is often reported. Our results represent, to our knowledge, the first quantitative evidence for sparse representations of sounds in the unanesthetized auditory cortex. Our results are compatible with a model in which most neurons are silent much of the time, and in which representations are composed of small dynamic subsets of highly active neurons.  相似文献   

5.
《Current biology : CB》2022,32(20):4451-4464.e7
  1. Download : Download high-res image (200KB)
  2. Download : Download full-size image
  相似文献   

6.
Topographic distributions and laminar pattern of cortico-cortical projections from the primary auditory field (AI), anterior auditory field (AAF), dorsoposterior field (DP), ventroposterior field (VP), dorsal field (D) and ventral field (V) were studied in relation to tonotopic maps in combined anatomical, electrophysiological and 2-deoxyfluoro-D-glucose (2DG) experiments. Distributions of axons were examined by means of retrogradely-transported fluorescent tracer Fast Blue (FB) injected in the primary (AI) and anterior (AAF) auditory field. Injections of fluorescent tracer were placed in electrophysiologically-identified locations of AI and AAF. Neurons in AAF, DP, VP and V project to AI in the ipsilateral hemisphere. This area also receives projections from AI, AAF and D from the contralateral hemisphere. In AI, DP and VP, neurons are connected with AAF in the ipsilateral hemisphere and AI and AAF in the opposite hemisphere. In all cases, patches of labeling are distributed along 2DG bands oriented parallel to the isofrequency line. Substantial numbers of retrogradedly labeled neurons with similar best frequencies (BFs) were observed in the ipsilateral and moderate to scant numbers in the contralateral hemisphere. In general, regions near the injection sites receive more densely-labeled projections than do more distant targets. In both hemispheres, the supragranular layer III contains the greatest concentration of cortico-cortical cells bodies; the granular and infragranular layer V contains a somewhat lower concentration.  相似文献   

7.
《Neuron》2023,111(13):2105-2118.e4
  1. Download : Download high-res image (203KB)
  2. Download : Download full-size image
  相似文献   

8.
Learning-induced changes of the spectro-temporal characteristics of primary auditory cortex (AI) units were studied by response plane analysis of recordings from the AI in unanaesthetized Mongolian gerbils. Using response planes obtained prior to and after auditory discrimination training bins of significant change were identified and their spectro-temporal distribution was studied. Bins of significant changes were generally found to be distributed over the entire spectro-temporal receptive field but occurred most frequently within the first 100 ms of response in the spectral neighbourhood (1.5 octaves) of the frequency of the reinforced conditioned stimulus. Training-induced response decreases occurred early after 10 ms for reinforced conditioned tones and tones in the frequency neighbourhood. Response increases occurred so early only for non-reinforced tones in the neighbourhood of the reinforced frequency and occurred later (after 40 ms) for the reinforced tones. The results are discussed in the light of dynamic disinhibition. Accepted: 13 August 1997  相似文献   

9.
《Current biology : CB》2021,31(21):4839-4844.e4
  1. Download : Download high-res image (228KB)
  2. Download : Download full-size image
  相似文献   

10.
Evoked potentials to tones and clicks were recorded simultaneously from seven points of the auditory cortex and one or two points of the somatosensory cortex in unanesthetized cats. Comparison of evoked potentials to tones of equal loudness in the 250–7000 Hz band showed no common pattern of cortical tonotopic distribution. However, an individual dependence of the components of the evoked potential on pitch and on localization of the recording point exists for each animal. With a change in stimulus intensity the absolute and relative values of these components of the evoked potential vary. The initial positive waves are the most variable; besides the two waves already known a third, intermediate wave, particulary sensitive to loudness, was discovered. The negative wave of the primary response increases proportionally to loudness. Evoked potentials to clicks are more uniform over the auditory cortex and more stable than those to tones. Responses appeared in the somatosensory cortex to loud stimuli, more regularly to clicks than to tones. It is concluded that the parameter of pitch is reflected in the cat cortex as a complex spatially-individual distribution of the amplitude and time parameters of the evoked potentials.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 115–125, March–April, 1975.  相似文献   

11.
In experiments on immobilized cats, intra- and extracellular response in tonic type neurons to tones of differing frequencies and intensities were investigated, as well as the organizational pattern of receptive fields in these units. Tonic type neurons were encountered at different cortical layers, but mostly (93% of the total) were located at a depth of 1.0–2.2 mm. Minimum thresholds required for response in these neurons were on average 7.7 dB below that found in neurons generating a phasic reaction in response to a tone. "Tonic" differed from "phasic" neurons in their inferior frequency-discriminative ability, with a Q10 value averaging 4.1±0.4 as against 9.1±0.7 in phasic neurons. Size of receptive fields in tonic neurons (as revealed by occurrence of spike response in these units) was 3.5 times that observed in phasic cells. Length of action potentials in the majority (80%) of tonic neurons was about one and a half times to twice that found in phasic units. Tonic neurons also displayed a high degree of sensitivity to changes in the duration and intensity of acoustic stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, July–August, pp. 498–506, 1969.  相似文献   

12.
The neural network structure of a guinea-pig's primary auditory cortex is estimated by applying pattern-time-series analysis to the auditory evoked responses. Spatiotemporal patterns in click-evoked responses, observed by optical recording with voltage-sensitive dye, are analyzed by time series analysis using a multivariable autoregressive (MAR) model. Oscillatory neural activities with a distribution of about 10 40 Hz in the click-induced evoked responses are found in the cortical response field. The cortical regions where the distributed neural oscillations are generated are identified by pattern-time-series analysis. In addition, two types of cortico-cortical connections, unilateral and bilateral connections between the cortical points, are speculated to be the causes of oscillatory neural activity transfer. It can be said that the so-called synchronized neural oscillation, in the sense of coherency or correlation between the two evoked responses at the oscillatory frequency, does not necessarily represent real corticocortical neural connections at the evoked response points.  相似文献   

13.
14.
Although individuals with autism are known to have significant communication problems, the cellular mechanisms responsible for impaired communication are poorly understood. Valproic acid (VPA) is an anticonvulsant that is a known risk factor for autism in prenatally exposed children. Prenatal VPA exposure in rats causes numerous neural and behavioral abnormalities that mimic autism. We predicted that VPA exposure may lead to auditory processing impairments which may contribute to the deficits in communication observed in individuals with autism. In this study, we document auditory cortex responses in rats prenatally exposed to VPA. We recorded local field potentials and multiunit responses to speech sounds in primary auditory cortex, anterior auditory field, ventral auditory field. and posterior auditory field in VPA exposed and control rats. Prenatal VPA exposure severely degrades the precise spatiotemporal patterns evoked by speech sounds in secondary, but not primary auditory cortex. This result parallels findings in humans and suggests that secondary auditory fields may be more sensitive to environmental disturbances and may provide insight into possible mechanisms related to auditory deficits in individuals with autism. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 972–986, 2014  相似文献   

15.
1. Frequency and space representation in the auditory cortex of the big brown bat, Eptesicus fuscus, were studied by recording responses of 223 neurons to acoustic stimuli presented in the bat's frontal auditory space. 2. The majority of the auditory cortical neurons were recorded at a depth of less than 500 microns with a response latency between 8 and 20 ms. They generally discharged phasically and had nonmonotonic intensity-rate functions. The minimum threshold, (MT) of these neurons was between 8 and 82 dB sound pressure level (SPL). Half of the cortical neurons showed spontaneous activity. All 55 threshold curves are V-shaped and can be described as broad, intermediate, or narrow. 3. Auditory cortical neurons are tonotopically organized along the anteroposterior axis of the auditory cortex. High-frequency-sensitive neurons are located anteriorly and low-frequency-sensitive neurons posteriorly. An overwhelming majority of neurons were sensitive to a frequency range between 30 and 75 kHz. 4. When a sound was delivered from the response center of a neuron on the bat's frontal auditory space, the neuron had its lowest MT. When the stimulus amplitude was increased above the MT, the neuron responded to sound delivered within a defined spatial area. The response center was not always at the geometric center of the spatial response area. The latter also expanded with stimulus amplitude. High-frequency-sensitive neurons tended to have smaller spatial response areas than low-frequency-sensitive neurons. 5. Response centers of all 223 neurons were located between 0 degrees and 50 degrees in azimuth, 2 degrees up and 25 degrees down in elevation of the contralateral frontal auditory space. Response centers of auditory cortical neurons tended to move toward the midline and slightly downward with increasing best frequency. 6. Auditory space representation appears to be systematically arranged according to the tonotopic axis of the auditory cortex. Thus, the lateral space is represented posteriorly and the middle space anteriorly. Space representation, however, is less systematic in the vertical direction. 7. Auditory cortical neurons are columnarly organized. Thus, the BFs, MTs, threshold curves, azimuthal location of response centers, and auditory spatial response areas of neurons sequentially isolated from an orthogonal electrode penetration are similar.  相似文献   

16.
Inferior colliculus (IC) slice cultures from postnatal (P) day 6-8 gerbils exhibit axonal regeneration across a lesion site, and these regrowing processes can form synapses. To determine whether regenerative capacity is lost in older tissue, as occurs in vivo, slices from P12-21-day animals were grown under similar conditions. While these cultures displayed a near complete loss of neurons over 6 days in vitro, glutamate receptor antagonists (AP5 and/or CNQX) significantly enhanced survival, particularly at P12-15. In contrast, several growth factors or high potassium did not improve neuron survival. Therefore, axonal regeneration was assessed following complete transection of the commissure in AP5/CNQX-treated IC cultures from P12 animals. Neurofilament staining revealed that transected commissural axons survived for 6 days in vitro, but only a few processes crossed the lesion site and these axons did not extend into the contralateral lobe. In contrast, there was robust axonal sprouting and growth within one lobe of the IC, remote from the lesion site. When P6 and P12 tissue was explanted onto a coated substrate, the P6 axons grew onto the substrate, but the P12 axons were seemingly prevented from reaching the substrate by a veil of nonneuronal cells. Coculture of the IC and one of its afferent populations, the lateral superior olive, provided a similar finding, indicating that failure to regenerate was a general property at the age examined. These data show that neuron survival is not sufficient to permit axon regeneration at P12, and suggest that P12 lesion sites manufacture a prohibitive substrate since process outgrowth is blocked specifically at the commissure transection.  相似文献   

17.
18.
This study examines the binaural and frequency representation in the primary auditory cortex (AC) of the big brown bat, Eptesicus fuscus, by using an ear-phone stimulation system. All 306 cortical neurons studied were excited by contralateral sound stimulation but they were either excited, inhibited or not affected by ipsilateral sound stimulation. These cortical neurons were columnarly organized according to their binaural and frequency-tuning properties. The excitation-excitation columns which occupy about 15% of the AC are mainly aggregated within an oval-shaped area of the central AC. The excitation-inhibition neurons and binaural neurons with mixed properties are distributed in the remaining 85% of the surrounding primary AC. Although the best frequency (BF) of these neurons shows a tendency to decrease from high to low along the anteroposterior axis of the primary AC, systematic variation in BF is not always consistent across the entire mapping area. In particular, BFs of cortical neurons isolated in the anterior AC vary quite unsystematically such that neurons with similar BFs are aggregated in isolated patches. Isofrequency and binaural columns are segregated into bands that intersect each other. Accepted: 13 August 1997  相似文献   

19.
Summary Responses of units in the auditory forebrain (field L/hyperstriatum ventrale-complex) of awake domestic chicks were studied to frequency-modulated (FM) signals and isointensity tone bursts, presented to the ear contralateral to the recording sites. FM signals, linear frequency sweeps in the range of 50 Hz to 10.25 kHz, differed in the rate of change of frequency (RCF) and in the direction of modulation. The majority of RCF response functions obtained could be classified as predominantly ascending and bell shaped. Best rates of change of frequency (BRCFs), assigned to these functions, covered a range of nearly 3 orders of magnitude. BRCFs of the same units for upward (positive BRCFs) and for downward modulations (negative BRCFs) were correlated. The lowest BRCF encountered among all units for a given isointensity ON-response bandwidth (F on ) increased as a function of F on . F on was derived from the responses to tone bursts of various frequencies at 70 dB SPL. As FON tended to increase with the best frequency (BF) of units the lowest BRCF encountered among all units for a given BF also increased as a function of BF. Positive and negative BRCFs of a unit were also correlated with the slopes of onset latency-frequency relationships below and above BF, respectively. FM responses were optimal, when the frequency-specific latency differences at a given unit were compensated by the direction and rate of frequency change in the signal. FM-directional sensitivity varied with BF. Most units with BFs below about 2 kHz preferred upward modulations, while those with BFs above 2 kHz preferred downward modulations. Directional preference and sensitivity correlated with asymmetric distributions of inhibitory sidebands around BF, as derived from the analysis of OFF-responses. Maximum directional sensitivity for a given BRCF increased with BRCF. BRCF and FM-directional sensitivity were topographically organized on neuronal planes harboring units with similar BFs (isofrequency planes). Highest BRCFs were observed in the input-layer L2 of field L. BRCF declined along a rostrocaudal isofrequency axis in all 4 subdivisions of the auditory forebrain. Similarly, response strength shifted from rostral to caudal as a function of RCF. FM-directional sensitivity was organized in a subdivision-specific fashion. Units in the input-layer of field L (L2), and even more so in the hyperstriatum ventrale, were fairly insensitive to the direction of modulation, whereas units in the postsynaptic layers of field L (L1 and L3) exhibited higher degrees of directional sensitivity. Directional sensitivity also declined along the rostrocaudal isofrequency axis of field L. Two simple models of connectivity in the chick auditory forebrain are presented, which could be sufficient to explain these results. One is based on a tonotopic arrangement of afferent synapses on dendrites and somata of units in L2, the other on local lateral inhibition in the postsynaptic layers of field L.Abbreviations BF best frequency (kHz) - BRCF best rate of change of frequency (kHz/s) - DS index of FM-directional sensitivity - F on ON-response bandwidth (kHz) - F off OFF-response bandwidth (kHz) - FM frequency modulation - RCF rate of change of frequency (kHz/s)  相似文献   

20.
Spike discharges of medullary units ofRana ridibunda in response to tones of optimal frequency for the neuron, with sinusoidal amplitude modulation, was studied. Reproduction of sound modulation in unit activity was assessed by the use of phase histograms of responses corresponding to the period of modulation. Amplitude modulation was reproduced in the firing pattern of neurons of the dorsal nucleus over a wide range of modulation frequencies and carrier levels. Accentuation of small changes of amplitude for modulation frequencies of 70–150 Hz was observed in many neurons of the superior olives. The phase of the response was a linear function of modulation frequency both in the dorsal nucleus and in the superior olives. The greatest enhancement of amplitude changes corresponded to low modulation indices.Academician N. N. Andreev Acoustics Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 390–396, May–June, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号