首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
A mutant strain of Escherichia coli was created by inserting a cassette encoding sucrose sensitivity and neomycin resistance (sacB-neo) into the small-subunit rRNA-encoding gene rrs in the rrnB operon. During growth in a complex medium, the cassette was lost from the population, and a complete rrs gene was restored at a rate of 5 x 10(-9) per cell division. Repair of this lesion required flanking regions of DNA that were similar to the six remaining intact rRNA operons and reestablished the full complement of seven rRNA operons. The relative fitness of strains with restored rrnB operons was 1 to 2% higher than that of the mutant strain. The rrnB operon normally contains a spacer region between the 16S and 23S rRNA-encoding genes that is similar in length and tRNA gene content to the spacer in rrnC, -E, and -G. In 2 of the 14 strains in which rrnB was restored, the spacer region had the same length as the spacer region in rrnA, -D, and -H. The requirement for flanking regions of nearly identical DNA and the replication of the spacer region from other rRNA operons during the repair of rrnB suggest that the restoration was accomplished via gene conversion. The rate of gene conversion was 10-fold less than the fixation of point mutations in the same region of the chromosome but was apparently sufficient to homogenize the sequences of rRNA genes in E. coli. These findings are discussed in the context of a conceptual model describing the presence of sequence heterogeneity in coevolving rRNA genes.  相似文献   

3.
Comparison of the 23S rRNA gene sequences of Edwardsiella tarda and Edw. ictaluri confirmed a close phylogenetic relationship between these two fish pathogen species and a distant relation with the 'core' members of the Enterobacteriaceae family. Analysis of the rrl gene for 23S rRNA in Edw. ictaluri revealed the presence of an intervening sequence (IVS) in helix-45. This new 98bp IVS shared 97% nucleotide identity with Salmonella typhimurium helix-45 IVS. Edw. ictaluri helix-45 IVS was present in all Edw. ictaluri strains analyzed and in at least six rrl operons within each cell. Fragmentation of 23S rRNA due to IVS excision by RNase III was observed by methylene blue staining of ribosomal RNA extracted from Edw. ictaluri isolates. This is the first report of an IVS in the 23S rRNA gene of the genus Edwardsiella.  相似文献   

4.
Reference strains from 48 selected serovars representing eight species of Leptospira were examined by two polymerase chain reaction (PCR)-based strategies. First, mapped restriction site polymorphisms (MRSP) were examined in PCR products from portions of rrs (16S rRNA gene) and rrl (23S rRNA gene). Twenty MRSP and 2 length polymorphisms were used to group reference strains into 16 MRSP profiles. Species assignments were consistent with those obtained by a second method, genomic fingerprinting with arbitrarily primed PCR, in which strains within a species were characterized by many shared arbitrarily primed PCR products. The results of both of these methods were in general agreement with those of previous studies that used DNA-DNA relatedness and confirmed the high level of divergence among the recognized species of Leptospira. However, Leptospira meyeri serovar ranarum and evansi strains were indistinguishable from some strains of Leptospira interrogans sensu stricto. Intervening sequences of about 485 to 740 bp were located near base 1230 in rrl of some strains.  相似文献   

5.
The ribosomal RNA multigene family in Escherichia coli comprises seven rrn operons of similar, but not identical, sequence. Four operons (rrnC, B, G, and E) contain genes in the 16S–23S intergenic spacer region (ISR) for tRNAGlu-2 and three (rrnA, D, and H) contain genes for tRNAIle-1 and tRNAAla-1B. To increase our understanding of their molecular evolution, we have determined the ISR sequence of the seven operons in a set of 12 strains from the ECOR collection. Each operon was specifically amplified using polymerase chain reaction primers designed from genes or open reading frames located upstream of the 16S rRNA genes in E. coli K12. With a single exception (ECOR 40), ISRs containing one or two tRNA genes were found at the same respective loci as those of strain K12. Intercistronic heterogeneity already found in K12 was representative of most variation among the strains studied and the location of polymorphic sites was the same. Dispersed nucleotide substitutions were very few but 21 variable sites were found grouped in a stem-loop, although the secondary structure was conserved. Some regions were found in which a stretch of nucleotides was substituted in block by one alternative, apparently unrelated, sequence (as illustrated by the known putative insertion of rsl in K12). Except for substitutions of different sizes and insertions/deletions found in the ISR, the pattern of nucleotide variation is very similar to that found for the 16S rRNA gene in E. coli. Strains K12 and ECOR 40 showed the highest intercistronic heterogeneity. Most strains showed a strong tendency to homogenization. Concerted evolution could explain the notorious conservation of this region that is supposed to have low functional restrictions. Received: 31 July 1997 / Accepted: 17 October 1997  相似文献   

6.
Phytoplasmas are cell-wallless Gram-positive low G + C bacteria belonging to the Mollicutes that inhabit the cytoplasm of plants and insects. Although phytoplasmas possess two ribosomal RNA (rrn) operons, only one has been fully sequenced. Here, we determined the complete nucleotide sequence of both rrn operons (designated rrnA and rrnB) of onion yellows (OY) phytoplasma. Both operons have rRNA genes organized as 5'-16S-23S-5S-3' with very highly conserved sequences; the 16S, 23S, and 5S rRNA genes are 99.9, 99.8, and 99.1% identical between the two operons. However, the organization of tRNA genes in the upstream region from 16S rRNA gene and in the downstream region from 5S rRNA gene differs markedly. Several promoter candidates were detected upstream from both operons, which suggests that both operons are functional. Interestingly, both have a tRNA(Ile) gene in the 16S-23S spacer region, while the reported rrnB operon of loofah witches' broom phytoplasma does not, indicating heterogenous gene organization of rrnB within phytoplasmas. The phytoplasma tRNA gene organization is similar to that of acholeplasmas, a closely related mollicute, and different from that of mycoplasmas, another mollicute. Moreover, the organization suggests that the rrn operons were derived from that of a related nonmollicute bacterium, Bacillus subtilis. This data should shed light on the evolutionary relationships and phylogeny of the mollicutes.  相似文献   

7.
A combined physical and genetic map of the Serpulina hyodysenteriae B78T genome was constructed by using pulsed-field gel electrophoresis and DNA blot hybridizations. The S. hyodysenteriae genome is a single circular chromosome about 3.2 Mb in size. The physical map of the chromosome was constructed with the restriction enzymes BssHII, EclXI, NotI, SalI, and SmaI. The physical map was used to constructed a linkage map for genes encoding rRNA, flagellum subunit proteins, DNA gyrase, NADH oxidase, and three distinct hemolysins. Several flaB2-related loci, encoding core flagellum subunit proteins, were detected and are dispersed around the chromosome. The rRNA gene organization in S. hyodysenteriae is unusual. S. hyodysenteriae has one gene each for 5S (rrf), 16S (rrs), and 23S (rrl) rRNAs. The rrf and rrl genes are closely linked (within 5 kb), while the rrs gene is about 860 kb from the other two rRNA genes. Using a probe for the S. hyodysenteriae gyrA gene, we identified a possible location for the chromosomal replication origin. The size and genetic organization of the S. hyodysenteriae chromosome are different from those of previously characterized spirochetes.  相似文献   

8.
9.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNA(Ile) genes between the 16S and 23S rDNAs, and the other had a tRNA(Ile) genes between the 16S and 23S rDNAs and a tRNA(Asn) gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

10.
The 23S rRNA genes (rrl genes) of some strains of certain species of the spirochete genus Leptospira carry an intervening sequence (IVS) of 485 to 759 bases flanked by terminal inverted repeat and encoding an open reading frame for a putative protein of over 120 amino acids. The structure and the sporadic distribution of the IVS suggest that it might be a mobile element that can be horizontally transferred within or between species. Phylogenetic hypotheses based on the sequences for six IVS open reading frames from various species were compared with hypotheses constructed by using DNA sequences from the 16S rRNA gene (rrs), which is not closely linked to rrl in this genus. The predicted phylogenies for the IVS and rrs differed in a major respect: one strain that claded with L. weillii in the tree based on the rrs data claded with L. noguchi in the tree based on the IVS data. Neither set of data supported a tree in which this strain was constrained to be in the same clade as was supported by the other set of data. This result indicates a probable horizontal transfer of the IVS from a recent ancestor of L. noguchi to a recent ancestor of one of the L. weillii strains. This observation is the first indication of horizontal transfer of elements encoded on the chromosomes of spirochetes.  相似文献   

11.
Several 16S to 23S spacers of 354 bp have been sequenced from six Escherichia coli strains belonging to the ECOR collection. Four phylogenetically informative variable sites were identified. The results of their comparison confirm the existence of two major phylogenetic branches in this species, as previously reported. Remarkable intercistronic heterogeneity was found in strain ECOR35 and its closest relatives, in which at least one of the operons has suffered a major mutagenic event or has an independent phylogenetic origin.  相似文献   

12.
The 23S ribosomal RNA (rRNA) gene has been sequenced in strains of the fish pathogens Photobacterium damselae subsp. damselae (ATCC 33539) and subsp. piscicida (ATCC 29690), showing that 3 nucleotide positions are clearly different between subspecies. In addition, the 5S rRNA gene plus the intergenic spacer region between the 23S and 5S rRNA genes (ITS-2) were amplified, cloned and sequenced for the 2 reference strains as well as the field isolates RG91 (subsp. damselae) and DI21 (subsp. piscicida). A 100% similarity was found for the consensus 5S rRNA gene sequence in the 2 subspecies, although some microheterogeneity was detected as inter-cistronic variability within the same chromosome. Sequence analysis of the spacer region between the 23S and 5S rRNA genes revealed 2 conserved and 3 variable nucleotide sequence blocks, and 4 different modular organizations were found. The ITS-2 spacer region exhibited both inter-subspecies and intercistronic polymorphism, with a mosaic-like structure. The EMBL accession numbers for the 23S, 5S and ITS-2 sequences are: P. damselae subsp. piscicida 5S gene (AJ274379), P. damselae subsp. damselae 23S gene (Y18520), subsp. piscicida 23S gene (Y17901), P. damselae subsp. piscicida ITS-2 (AJ250695, AJ250696), P. damselae subsp. damselae ITS-2 (AJ250697, AJ250698).  相似文献   

13.
Using restriction endonucleases DraI, AseI, and I-CeuI in conjunction with pulsed-field gel electrophoresis, we have shown that Spirochaeta aurantia M1 possesses a circular 3.98-Mb genome. This is the second largest spirochete chromosome yet analyzed. The observation that the latter enzyme cuts in 3 places suggests the presence of 3 copies of the large subunit (23S) rRNA gene (rrl), which was confirmed by Southern hybridizations. The complete sequence of 2 of the ribosomal RNA operons was determined, revealing that their structure resembled that of the typical member of the bacterial superkingdom: rrs (16S; 1561 bp), tRNA, rrl (23S; 2972 bp), and rrf (5S; 110 bp). The S. aurantia rrs-rrl intergenic regions, as with Treponema denticola, contain genes specifying a 73-nt tRNA(Ala) (anticodon TGC) and a 77-nt tRNA(Ile) (anticodon GAT).  相似文献   

14.
Zoogloea ramigera: A phylogenetically diverse species   总被引:1,自引:0,他引:1  
Abstract Amplification of the gene encoding 23S rRNA of Aeromonas hydrophila by polymerase chain reaction, with primers complementary to conserved regions of 16S and the 3'-end of 23S rRNA genes, resulted in a DNA fragment of approximately 3 kb. This fragment was cloned in Escherichia coli , and its nucleotide sequence determined. The region encoding 23S rRNA shows high homology with the published sequences of 23S rRNA from other members of the gamma division of Proteobacteria . The sequence of the intergenic spacer region, between the 16S and 23S rRNA genes, was determined in five clones. Three types of spacer were identified: two clones were identical and encoded tRNAIle and tRNAAla while the remaining three clones contained tRNAGlu, only two had the same spacer sequences. This variation in sequence indicates that the different clones may be derived from different ribosomal RNA operons.  相似文献   

15.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

16.
The slow-growing Mycobacterium celatum is known to have two different 16S rRNA gene sequences. This study confirms the presence of two rrn operons and describes their organization. One operon (rrnA) was found to be located downstream from murA and the other (rrnB) was found downstream from tyrS. The promoter regions were sequenced, and also the intergenic transcribed spacer (ITS1 and ITS2) regions separating the 16S rRNA, 23S rRNA and 5S rRNA gene coding regions. Analysis of the RNA fraction revealed that rrnA is regulated by two (P1 and PCL1) promoters and rrnB is regulated by one (P1). These data show that the two rrn operons of M. celatum are organized in the same way as the two rrn operons of classical fast-growing mycobacteria. This information was incorporated into a phylogenetic analysis of the genus based on both 16S rRNA gene sequences and (where possible) the number of rrn operons per genome. The results suggest that the ancestral Mycobacterium possessed two (rrnA and rrnB) operons per genome and that subsequently, on two separate occasions, an operon (rrnB) was lost, leading to two clusters of species having a single operon (rrnA); one cluster includes the classical pathogens and the other includes Mycobacterium abscessus and Mycobacterium chelonae.  相似文献   

17.
Salmonella typhi Ty2 rrl genes contain intervening sequences (IVSs) in helix-25 but not in helix-45 on the basis of observed 23S rRNA fragmentation caused by IVS excision. We have confirmed this and shown all seven IVSs to be identical by isolating genomic DNA fragments containing each of the seven rrl genes from S. typhi Ty2 by use of pulsed-field gel electrophoresis; each rrl gene was amplified by PCR in the helix-25 and helix-45 regions and cycle sequenced. Thirty independent wild-type S. typhi strains, tested by genomic PCR and DraI restriction, also have seven rrl genes with helix-25 IVSs and no helix-45 IVSs. We propose that IVS homogeneity in S. typhi occurs because gene conversion drives IVS sequence maintenance and because adaptation to human hosts results in limited clonal diversity.  相似文献   

18.
W H Yap  Y Wang 《Gene》1999,232(1):77-85
The genome of Streptomyces nodosus contains six ribosomal RNA (rRNA) operons. Four of the rRNA operons; rrnB, rrnD, rrnE and rrnF were cloned. We have completely sequenced all four operons, including a region 750 base pairs (bp) upstream of the 16S rRNA gene. The three rRNA genes present in each operon were closely linked in the order 16S-23S-5S. A sequence comparison of the four operons showed more than 99% sequence similarity between the corresponding 16S and 23S rRNA genes, and more than 97% similarity between 5S rRNA genes. The sequence differences observed between 23S rRNA genes appeared to be localized in two specific regions. Substantial sequence differences were found in the region upstream of the 16S rRNA gene as well as in the internal transcribed spacers. No tRNA gene was found in the 16S-23S spacer regions.  相似文献   

19.
Rhodopseudomonas palustris strains carry one or two ribosomal rRNA operons, and those with duplicated rrn operons grow faster. The two rrn operons in R. palustris No. 7 are virtually identical over a 54,70-bp stretch containing the genes for 16S rRNA, tRNAile, tRNAala, 23S rRNA and 5S rRNA, as well as the intergenic spacers and part of the extragenic spacer. In R. palustris, unlike most bacteria with multiple rrn operons, the putative promoter sequences of the two operons are highly diverged, suggesting possible functional differentiation. By simultaneous primer-extension analysis of both pre-rRNAs, we detected a two-fold higher level of expression from rrnA under photoautotrophic conditions. Alteration of the conditions of growth leads to changes in the relative levels of expression of the two operons. Within the 5,470-bp segment, only two sequence differences are found between the 23S rRNA genes; one is at the center of the 23S rRNA molecule and affects a site of unknown function, and the other is within or immediately adjacent to sequences involved in processing of the 5' 23S rRNA IVS. In vitro processing of 5' IVS-containing 23S rRNA precursors from each operon does not reveal any detectable difference between them. The 5' ends of the mature 16S, 23S, and 5S rRNAs were determined by primer-extension analysis, and the 3' end of 23S rRNA was determined by RNA linker ligation-mediated cDNA cloning. The 5' and 3' ends of the R. palustris 23S rRNA molecule are extensively processed, suggesting that, unlike the situation in the established eubacterial model, these ends cannot basepair.  相似文献   

20.
Lack of polymorphism within the rRNA operons of group A streptococci   总被引:4,自引:0,他引:4  
Polymerase chain reaction (PCR) ribotyping of many bacterial species has shown that polymorphism of the ribosomal RNA (rRNA) operons, within and between strains, is common. Restriction fragment length polymorphism (RFLP) analysis of the rRNA operons of thirty-two genetically and geographically distinct strains of group A streptococci (GAS) revealed that there are only two major HaeIII PCR-ribotypes. This variation is due to a single nucleotide change within the 16S–23S intergenic spacer regions of these operons. As in many other bacterial species, this spacer region in streptococci also contains the gene for tRNAala. Within each GAS isolate, hybridization results are consistent with the presence of six rRNA operons. Interestingly, for a given strain, irrespective of its origin, all six rRNA operons have the same RFLP pattern. This contrasts with the findings in many other bacterial species, where heterogeneity of the rRNA operons within a genome is a common feature. This lack of heterogeneity of rRNA operons in an organism that is known to acquire genetic sequences through horizontal transfer is intriguing. Received: 22 November 1996 / Accepted: 30 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号