首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavior of spin labels in a variety of interdigitated lipid bilayers   总被引:2,自引:0,他引:2  
The behavior of a number of spin labels in several lipid bilayers, shown by X-ray diffraction to be interdigitated, has been compared in order to evaluate the ability of the spin label technique to detect and diagnose the structure of lipid bilayers. The main difference between interdigitated and non-interdigitated gel phase bilayers which can be exploited for determination of their structure using spin labels, is that the former have a much less steep fluidity gradient. Thus long chain spin labels with the nitroxide group near the terminal methyl of the chain, such as 16-doxylstearic acid, its methyl ester, or a phosphatidylglycerol spin label containing 16-doxylstearic acid (PG-SL), are more motionally restricted and/or ordered in the interdigitated bilayer than in the non-interdigitated bilayer. This difference is large enough to be of diagnostic value for all three spin labels in the interdigitated bilayers of dihexadecylphosphatidylcholine, dipalmitoylphosphatidylcholine/ethanol, and 1,3-dipalmitoylphosphatidylcholine. However, it is not large enough to be of diagnostic value at low temperatures. Use of probes with the nitroxide group closer to the apolar/polar interface reveals that these latter interdigitated bilayers are more disordered or less closely packed. As the temperature is increased, however, the motion of the PG-SL does not increase as much in these interdigitated bilayers as in non-interdigitated bilayers. The difference in the motion and/or order of PG-SL between interdigitated and non-interdigitated bilayers is large enough at higher temperatures to be of value in diagnosing the structure of the bilayers. Thus by choice of a suitable spin label and a suitable temperature, this technique should prove useful for detection and diagnosis of lipid bilayer structure with a good degree of reliability. Caution must, of course be exercised, as with any spectroscopic technique. Spin labels will also be invaluable for more detailed studies of known interdigitated bilayers, which would be time- and material-consuming, if carried out using X-ray diffraction solely.  相似文献   

2.
This is the first in a series of papers concerned with methods for the determination of the structures of fluid phospholipid bilayers in the liquid-crystalline (L alpha) phase. The basic approach is the joint refinement of quasimolecular models (King and White, 1986. Biophys. J. 49:1047-1054) using x-ray and neutron diffraction data. We present here (a) the rationale for quasimolecular models, (b) the nature of the resolution problem for thermally disordered bilayers, and (c) an analysis of the resolution of experiments in which Gaussian functions are used to describe the distribution of submolecular components. We show that multilamellar liquid-crystalline bilayers are best described by the convolution of a perfect lattice function with a thermally disordered bilayer unit cell. Lamellar diffraction measurements on such a system generally yield only 5-10 orders of diffraction data from which transbilayer profiles of the unit cell can be constructed. The canonical resolution of these transbilayer profiles, defined as the Bragg spacing divided by the index of the highest recorded diffraction order, is typically 5-10 A. Using simple model calculations, we show that the canonical resolution is a measure of the widths of the distributions of constituents of the unit cell rather than a measure of the spatial separation of the distributions. The widths provide a measure of the thermal motion of the bilayer constituents which can be described by Gaussian functions. The equilibrium positions of the centers of the distributions can be determined with a precision of 0.1-0.5 A based upon typical experimental errors.  相似文献   

3.
Diffusion in cell membranes is not just simple two-dimensional Brownian motion but typically depends on the timescale of the observation. The physical origins of this anomalous subdiffusion are unresolved, and model systems capable of quantitative and reproducible control of membrane diffusion have been recognized as a key experimental bottleneck. Here, we control anomalous diffusion using supported lipid bilayers containing lipids derivatized with polyethylene glycol (PEG) headgroups. Bilayers with specific excluded area fractions are formed by control of PEG lipid mole fraction. These bilayers exhibit a switch in diffusive behavior, becoming anomalous as bilayer continuity is disrupted. Using a combination of single-molecule fluorescence and interferometric imaging, we measure the anomalous behavior in this model over four orders of magnitude in time. Diffusion in these bilayers is well described by a power-law dependence of the mean-square displacement with observation time. Anomaleity in this system can be tailored by simply controlling the mole fraction of PEG lipid, producing bilayers with diffusion parameters similar to those observed for anomalous diffusion in biological membranes.  相似文献   

4.
HIV‐1 Vpu is an 81‐residue protein with a single N‐terminal transmembrane (TM) helical segment that is involved in the release of new virions from host cell membranes. Vpu and its TM segment form ion channels in phospholipid bilayers, presumably by oligomerization of TM helices into a pore‐like structure. We describe measurements that provide new constraints on the oligomerization state and supramolecular structure of residues 1–40 of Vpu (Vpu1–40), including analytical ultracentrifugation measurements to investigate oligomerization in detergent micelles, photo‐induced crosslinking experiments to investigate oligomerization in bilayers, and solid‐state nuclear magnetic resonance measurements to obtain constraints on intermolecular contacts between and orientations of TM helices in bilayers. From these data, we develop molecular models for Vpu TM oligomers. The data indicate that a variety of oligomers coexist in phospholipid bilayers, so that a unique supramolecular structure can not be defined. Nonetheless, since oligomers of various sizes have similar intermolecular contacts and orientations, molecular models developed from our data are most likely representative of Vpu TM oligomers that exist in host cell membranes.  相似文献   

5.
The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.  相似文献   

6.
Steric repulsion between phosphatidylcholine bilayers   总被引:12,自引:0,他引:12  
T J McIntosh  A D Magid  S A Simon 《Biochemistry》1987,26(23):7325-7332
The change in pressure needed to bring egg phosphatidylcholine bilayers into contact from their equilibrium separation in excess water has been determined as a function of both distance between the bilayers and water content. A distinct upward break in the pressure-distance relation appears at an interbilayer separation of about 5 A, whereas no such deviation is present in the pressure-water content relation. Thus, this break is not a property of the dehydration process per se, but instead is attributed to steric repulsion between the mobile lipid head groups that extend 2-3 A into the fluid space between bilayers. That is, electron density profiles of these bilayers indicate that the observed break in the pressure-spacing relation occurs at a bilayer separation where extended head groups from apposing bilayers come into steric hindrance. The pressure-spacing data are used to separate steric pressure from the repulsive hydration pressure, as well as to quantitate the range and magnitude of the steric interaction. An appreciable fraction of the measured steric energy can be ascribed to a decrease in configurational entropy due to restricted head-group motion as adjacent bilayers come together.  相似文献   

7.
The diffusion of lipids in bilayers on curved supports of porous silica beads is studied by deuterium solid state NMR relaxation. We demonstrate that the combination of bilayers coated on curved silica substrates with NMR experiments and simulations which are sensitive to the diffusive motion of the fluid bilayer lipids can provide information about the substrate topology. This provides a new approach for the exploration of the complex internal surface topology of silica gels widely used in biomolecule chromatography. Received: 10 December 1997 / Revised version: 26 January 1998 / Accepted: 4 February 1998  相似文献   

8.
The ESR spectra of cholestane spin labels (CSL) in dioleoylphosphatidylcholine (DOPC) bilayers containing 20 wt% of cholesterol, 7-dehydrocholesterol, beta-sitosterol, stigmasterol and lanosterol exhibit a marked similarity, thus indicating that these steroids induced the same effects on the lipid bilayer over the temperature range 21-55 degrees C. The incorporation of these steroids into the DOPC bilayers enhances the orientational order of the CSL molecules at every temperature studied, but only induces a pronounced slow-down in their rotational motions at temperatures above 35 degrees C. Similar results were obtained in DOPC/ergosterol multilamellar liposomes, but the changes are now less pronounced than in the other five DOPC/steroid systems. In contrast, the addition of stigmasterol to digalactosyldiacylglycerol (DGDG) bilayers appears to increase the order parameter mean value of P2, without affecting the diffusion coefficients. Furthermore, the incorporation of 7-dehydrocholesterol to DGDG bilayers causes a large enhancement in the orientational order, but has only a small effect on D perpendicular of the CSL molecules. Importantly, this latter effect appears to be independent of temperature. The marked changes in the rates of the rotational motion brought about by the addition of steroids, contrasts with the lack of a significant effect of unsaturation on the bilayer dynamics reported by us previously (Korstanje et al. (1989), Biochim. Biophys. Acta 980, 225-233, and 982, 196-204).  相似文献   

9.
A theory of fluorescence polarization decay in membranes.   总被引:22,自引:8,他引:14       下载免费PDF全文
K Kinosita  Jr  S Kawato    A Ikegami 《Biophysical journal》1977,20(3):289-305
Decay of fluorescence polarization after an impulsive excitation is correlated with wobbling motion of fluorescent molecules in membranes. The motion is characterized by two parameters, a "wobbling diffusion constant" and a "degree of orientational constraint" both of which can be determined directly from experimentally obtained decay. Detailed discussion, including theoretically calculated time-courses of polarization decay, is given for several types of molecules embedded in lipid bilayers; these types cover a large part of fluorescent probes available at present. The theory is useful for the analysis of fluorescence polarization decay in any system where the orientation of fluorophore is restricted by the surrounding structure.  相似文献   

10.
In this work we examine the interaction between the 13-residue cationic antimicrobial peptide (AMP) tritrpticin (VRRFPWWWPFLRR, TRP3) and model membranes of variable lipid composition. The effect on peptide conformational properties was investigated by means of CD (circular dichroism) and fluorescence spectroscopies. Based on the hypothesis that the antibiotic acts through a mechanism involving toroidal pore formation, and taking into account that models of toroidal pores imply the formation of positive curvature, we used large unilamellar vesicles (LUV) to mimic the initial step of peptide-lipid interaction, when the peptide binds to the bilayer membrane, and micelles to mimic the topology of the pore itself, since these aggregates display positive curvature. In order to more faithfully assess the role of curvature, micelles were prepared with lysophospholipids containing (qualitatively and quantitatively) head groups identical to those of bilayer phospholipids. CD and fluorescence spectra showed that, while TRP3 binds to bilayers only when they carry negatively charged phospholipids, binding to micelles occurs irrespective of surface charge, indicating that electrostatic interactions play a less predominant role in the latter case. Moreover, the conformations acquired by the peptide were independent of lipid composition in both bilayers and micelles. However, the conformations were different in bilayers and in micelles, suggesting that curvature has an influence on the secondary structure acquired by the peptide. Fluorescence data pointed to an interfacial location of TRP3 in both types of aggregates. Nevertheless, experiments with a water soluble fluorescence quencher suggested that the tryptophan residues are more accessible to the quencher in micelles than in bilayers. Thus, we propose that bilayers and micelles can be used as models for the two steps of toroidal pore formation.  相似文献   

11.
In an extension of our earlier work (Peng, Z.-y., V. Simplaceanu, I. J. Lowe, and C. Ho. 1988. Biophys. J. 54:81-95), the rotating-frame nuclear spin-lattice relaxation (T1 rho) technique has been used to investigate the slow molecular motions (10(-4) - 10(-6) s) in lipid bilayers prepared from protonated or perdeuterated 19F-labeled phospholipids in the absence and presence of cholesterol or gramicidin as membrane-interacting molecules. Complications caused by the 19F-1H cross-polarization observed previously can be removed by the substitution of 2H for 1H in the acyl chains. Only a weak dependence of the T-1(1 rho) on the locking field strength is found for a phospholipid molecule with perdeuterated acyl chains, indicating that there are no slow motions with a single, well-defined correlation time between 5 x 10(-6) and 4 x 10(-5) s. However, the orientation dependences of the T-1(1 rho) can be well fitted by motional models with either one slow motion having an unspecified geometry or with a superposition of two specific types of slow motions. Cholesterol and gramicidin show distinct effects in altering either the geometry or the weighting of slow motions in phospholipid bilayers, as reflected by changes in the orientation dependence. These two additives also exhibit quite different label-position specificities. A qualitative understanding of the induced effects of cholesterol and gramicidin on the dynamics of phospholipid bilayers will be discussed.  相似文献   

12.
As a step towards an automated and operator-free ion channel measurement platform we have previously demonstrated a solution formulation for artificial lipid bilayers that enabled the indefinite storage and shipping of frozen bilayer precursors. In this work, the solutions were deposited by hand. Here, we have adapted pin tools to deposit the bilayer precursor solutions onto multi-element arrays, a popular method for microarray solution deposition. The pin tools have enabled the deposited volume to be applied highly repeatably and controllably, resulting in reduction of bilayer formation times to <1 h. The pin tools are also compatible with computerized motion control platforms, enabling automated and high throughput production. We discuss these results and the prospects of this technology to produce high density bilayer arrays for high throughput measurement of ion channels incorporated into artificial bilayers.  相似文献   

13.
Two-dimensional microelectrophoresis in supported lipid bilayers   总被引:1,自引:1,他引:0       下载免费PDF全文
We report the application of supported bilayers for two-dimensional microelectrophoresis. This method allows the lateral separation and accumulation of charged amphiphilic molecular probes in bilayers by application of an electric field parallel to the bilayer surface. Diffusion coefficient and mobility of the fluorescent probes are determined by observation of the fluorescence recovery after photobleaching (pattern bleaching). The diffusion coefficients and the mobilities of oppositely charged fluorescent probes in one bilayer can be determined independently from a single measurement. By analysis of the motion of charged and uncharged probes in one membrane one can distinguish between the motion caused by the electric field acting on the charge of individual probes and that caused by frictional forces due to electroosmosis.  相似文献   

14.
15.
Torsion angle analysis of glycolipid order at membrane surfaces.   总被引:3,自引:3,他引:0  
  相似文献   

16.
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.  相似文献   

17.
Interaction of poly(hexamethylene biguanide hydrochloride) (PHMB), which is a polymeric biocide bearing biguanide groups in its main chain, with phospholipid bilayers was studied by the fluorescence depolarization method. A strong interaction of PHMB with negatively charged bilayers composed of phosphatidylglycerol(PG) alone or of PG and phosphatidylcholine (PC) was observed, whereas neutral PC bilayers were not affected. On adding PHMB, the fluorescence polarization of diphenylhexatriene embedded in the negatively charged bilayers was reduced to a great extent, especially in the gel phase. This was interpreted in terms of PHMB-induced expansion and fluidization of the bilayer, which enables the probe molecule to undergo less-hindered torsional motion. Similarity between PHMB and polymyxin B in the structure, the mode of action against bacteria and the interaction with lipid membranes is discussed.  相似文献   

18.
Phosphatidylcholine bilayers can accommodate large quantities of monoacylglycerol. Incorporating up to 40% monoacylglycerol has little effect on the orientation and motion of the phosphatidylcholine polar group. Briefly heating mixed dispersions of 1-monooleoylglycerol/egg phosphatidylcholine (1:1, weight ratio; 2.1:1, mole ratio) to 50-60 degrees C induced spontaneous vesiculation: unilamellar and some oligolamellar vesicles bud off the large multilamellar particles. The size of the resulting vesicles ranges from 100 to 1000 nm, with the bulk of the vesicles having diameters between 100 and 500 nm. The spontaneous vesiculation process is reflected in the visual clearance of the mixed lipid dispersion and in the collapse of the 31P powder NMR spectrum to a sharp, asymmetric peak. The narrowing of the 31P-NMR spectrum is explained in terms of additional molecular and/or segmental motion of the lipid polar groups. In mixed dispersions of 1-monooleoylglycerol/egg phosphatidylcholine containing an excess of 1-monooleoylglycerol (greater than or equal to 50%) domain formation takes place, i.e., the formation of local clusters enriched in either of the two lipids. As a result the mechanical properties of these mixed lipid bilayers seem to be quite different from those of pure egg phosphatidylcholine.  相似文献   

19.
20.
Nanosecond fluorescence polarization anisotropy decay is used to determine the effect of the bacteriophage M13 coat protein on lipid bilayer acyl chain dynamics and order. The fluorescent acyl chain analogues cis- and trans-parinaric acid were used to determine the rate and extent of the angular motion of acyl chains in liquid crystalline (39 degrees C) dimyristoylphosphatidylcholine bilayers free of coat protein or containing the coat protein at a protein:lipid ratio of 1:30. Subnanosecond time resolution was obtained by using synchrotron radiation as the excitation source for single photon counting detection. Previous measurements of Förster energy transfer from coat protein tryptophan to cis- or trans-parinaric acid have shown that these probes are randomly distributed in the bilayer with respect to the protein. The anisotropy decay observed for pure bilayers has the form of a rapid drop, followed by a nonzero constant region extending from roughly 3 ns to at least 12 ns. The magnitude of the anisotropy in the plateau region is simply related to the acyl chain order parameter. The effect of the M13 coat protein is to increase the acyl chain order parameter significantly while having only a small effect on the rate of angular relaxation. This behavior is rationalized in terms of a simple microscopic model. The order parameters for pure lipid and coat protein containing bilayers are compared to 2H-NMR values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号