首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cochlear nuclear complex (CN) is the entry point for central auditory processing. Although constituent neurons have been studied physiologically, their embryological origins and molecular profiles remain obscure. Applying intersectional and subtractive genetic fate mapping approaches, we show that this complex develops modularly from genetically separable progenitor populations arrayed as rostrocaudal microdomains within and outside the hindbrain (lower) rhombic lip (LRL). The dorsal CN subdivision, structurally and topographically similar to the cerebellum, arises from microdomains unexpectedly caudal and noncontiguous to cerebellar primordium; ventral CN subdivisions arise from more rostral LRL. Magnocellular regions receive contributions from LRL and coaxial non-lip progenitors; contrastingly, ensheathing granule cells derive principally from LRL. Also LRL-derived and molecularly similar to CN granule cells are precerebellar mossy fiber neurons; surprisingly, these ostensibly intertwined populations have separable origins and adjacent but segregated migratory streams. Together, these findings provide new platforms for investigating the development and evolution of auditory and cerebellar systems.  相似文献   

2.
3.
Development and evolution of cerebellar neural circuits   总被引:1,自引:0,他引:1  
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.  相似文献   

4.
During neurogenesis, complex networks of genes act sequentially to control neuronal differentiation. In the neural tube, the expression of Pax6, a paired-box-containing gene, just precedes the appearance of the first post-mitotic neurons. So far, its only reported function in the spinal cord is in specifying subsets of neurons. Here we address its possible function in controlling the balance between proliferation and commitment of neural progenitors. We report that increasing Pax6 level is sufficient to push neural progenitors toward cell cycle exit and neuronal commitment via Neurogenin 2 (Ngn2) upregulation. However, neuronal precursors maintaining Pax6(On) fail to perform neuronal differentiation. Conversely, turning off Pax6 function in these precursors is sufficient to provoke premature differentiation and the number of differentiated neurons depends of the amount of Pax6 protein. Moreover, we found that Pax6 expression involves negative feedback regulation by Ngn2 and this repression is critical for the proneural activity of Ngn2. We present a model in which the level of Pax6 activity first conditions the moment when a given progenitor will leave the cell cycle and second, the moment when a selected neuronal precursor will irreversibly differentiate.  相似文献   

5.
Origin of the precerebellar system   总被引:5,自引:0,他引:5  
Rodriguez CI  Dymecki SM 《Neuron》2000,27(3):475-486
The precerebellar system provides the principal input to the cerebellum and is essential for coordinated motor activity. Using a FLP recombinase-based fate mapping approach, we provide direct evidence in the mouse that this ventral brainstem system derives from dorsally located rhombic neuroepithelium. Moreover, by fate mapping at the resolution of a gene expression pattern, we have uncovered an unexpected subdivision within the precerebellar primordium: embryonic expression of Wnt1 appears to identify the class of precerebellar progenitors that will later project mossy fibers from the brainstem to the cerebellum, as opposed to the class of precerebellar neurons that project climbing fibers. Differential gene expression therefore appears to demarcate two populations within the precerebellar primordium, grouping progenitors by their future type of axonal projection and synaptic partner rather than by final topographical position.  相似文献   

6.
Distinct classes of neurons are generated from progenitor cells distributed in characteristic dorsoventral patterns in the developing spinal neural tube. We define restricted neural progenitor populations by the discrete, nonoverlapping expression of Ngn1, Math1, and Mash1. Crossinhibition between these bHLH factors is demonstrated and provides a mechanism for the generation of discrete bHLH expression domains. This precise control of bHLH factor expression is essential for proper neural development since as demonstrated in both loss- and gain-of-function experiments, expression of Math1 or Ngn1 in dorsal progenitor cells determines whether LH2A/B- or dorsal Lim1/2-expressing interneurons will develop. Together, the data suggest that although Math1 and Ngn1 appear to be redundant with respect to neurogenesis, they have distinct functions in specifying neuronal subtype in the dorsal neural tube.  相似文献   

7.
Recent studies have shown that generation of different kinds of neurones is controlled by combinatorial actions of homeodomain (HD) proteins expressed in the neuronal progenitors. Pax6 is a HD protein that has previously been shown to be involved in the differentiation of the hindbrain somatic (SM) motoneurones and V1 interneurones in the hindbrain and/or spinal cord. To investigate in greater depth the role of Pax6 in generation of the ventral neurones, we first examined the expression patterns of HD protein genes and subtype-specific neuronal markers in the hindbrain of the Pax6 homozygous mutant rat. We found that Islet2 (SM neurone marker) and En1 (V1 interneurone marker) were transiently expressed in a small number of cells, indicating that Pax6 is not directly required for specification of these neurones. We also observed that domains of all other HD protein genes (Nkx2.2, Nkx6.1, Irx3, Dbx2 and Dbx1) were shifted and their boundaries became blurred. Thus, Pax6 is required for establishment of the progenitor domains of the ventral neurones. Next, we performed Pax6 overexpression experiments by electroporating rat embryos in whole embryo culture. Pax6 overexpression in the wild type decreased expression of Nkx2.2, but ectopically increased expression of Irx3, Dbx1 and Dbx2. Moreover, electroporation of Pax6 into the Pax6 mutant hindbrain rescued the development of Islet2-positive and En1-positive neurones. To know reasons for perturbed progenitor domain formation in Pax6 mutant, we examined expression patterns of Shh signalling molecules and states of cell death and cell proliferation. Shh was similarly expressed in the floor plate of the mutant hindbrain, while the expressions of Ptc1, Gli1 and Gli2 were altered only in the progenitor domains for the motoneurones. The position and number of TUNEL-positive cells were unchanged in the Pax6 mutant. Although the proportion of cells that were BrdU-positive slightly increased in the mutant, there was no relationship with specific progenitor domains. Taken together, we conclude that Pax6 regulates specification of the ventral neurone subtypes by establishing the correct progenitor domains.  相似文献   

8.
9.
Wnt signaling is involved in numerous processes during vertebrate CNS development. In this study, we used conditional Cre/loxP system in mouse to ablate or activate beta-catenin in the telencephalon in two time windows: before and after the onset of neurogenesis. We show that beta-catenin mediated Wnt signals are required to maintain the molecular identity of the pallium. Inactivation of beta-catenin in the telencephalon before neurogenesis results in downregulated expression of dorsal markers Emx1, Emx2 and Ngn2, and in ectopic up-regulation of ventral markers Gsh2, Mash1 and Dlx2 in the pallium. In contrast, ablation of ss-catenin after the onset of cortical neurogenesis (E11.5) does not result in a dorso-ventral fate shift. In addition, activation of canonical Wnt signaling in the subpallium leads to a repression of ventral telencephalic cell identities as shown by the down-regulation of subpallial markers Dlx2, Nkx2.1, Gsh2, Olig2 and Mash1. This was accompanied with an expansion of dorsal identities ventrally as shown by the expanded expression domains of pallial markers Pax6 and Ngn2. Thus, our data suggest that canonical Wnt signals are involved in maintaining the identity of the pallium by controlling expression of dorsal markers and by suppressing ventral programs from being activated in pallial progenitor cells.  相似文献   

10.
We have examined how genetic pathways that specify neuronal identity and regulate neurogenesis interface in the vertebrate neural tube. Here, we demonstrate that expression of the proneural gene Neurogenin2 (Ngn2) in the ventral spinal cord results from the modular activity of three enhancers active in distinct progenitor domains, suggesting that Ngn2 expression is controlled by dorsoventral patterning signals. Consistent with this hypothesis, Ngn2 enhancer activity is dependent on the function of Pax6, a homeodomain factor involved in specifying the identity of ventral spinal cord progenitors. Moreover, we show that Ngn2 is required for the correct expression of Pax6 and several homeodomain proteins expressed in defined neuronal populations. Thus, neuronal differentiation involves crossregulatory interactions between a bHLH-driven program of neurogenesis and genetic pathways specifying progenitor and neuronal identity in the spinal cord.  相似文献   

11.
12.
13.
The mid/hindbrain junction region, which expresses Fgf8, can act as an organizer to transform caudal forebrain or hindbrain tissue into midbrain or cerebellar structures, respectively. FGF8-soaked beads placed in the chick forebrain can similarly induce ectopic expression of mid/hindbrain genes and development of midbrain structures (Crossley, P. H., Martinez, S. and Martin, G. R. (1996) Nature 380, 66-68). In contrast, ectopic expression of Fgf8a in the mouse midbrain and caudal forebrain using a Wnt1 regulatory element produced no apparent patterning defects in the embryos examined (Lee, S. M., Danielian, P. S., Fritzsch, B. and McMahon, A. P. (1997) Development 124, 959-969). We show here that FGF8b-soaked beads can not only induce expression of the mid/hindbrain genes En1, En2 and Pax5 in mouse embryonic day 9.5 (E9.5) caudal forebrain explants, but also can induce the hindbrain gene Gbx2 and alter the expression of Wnt1 in both midbrain and caudal forebrain explants. We also show that FGF8b-soaked beads can repress Otx2 in midbrain explants. Furthermore, Wnt1-Fgf8b transgenic embryos in which the same Wnt1 regulatory element is used to express Fgf8b, have ectopic expression of En1, En2, Pax5 and Gbx2 in the dorsal hindbrain and spinal cord at E10.5, as well as exencephaly and abnormal spinal cord morphology. More strikingly, Fgf8b expression in more rostral brain regions appears to transform the midbrain and caudal forebrain into an anterior hindbrain fate through expansion of the Gbx2 domain and repression of Otx2 as early as the 7-somite stage. These findings suggest that normal Fgf8 expression in the anterior hindbrain not only functions to maintain development of the entire mid/hindbrain by regulating genes like En1, En2 and Pax5, but also might function to maintain a metencephalic identity by regulating Gbx2 and Otx2 expression.  相似文献   

14.
15.
16.
The isthmic organizer and brain regionalization   总被引:4,自引:0,他引:4  
Distinct neural identities are acquired through progressive restriction of developmental potential under the influence of local environmental signals. Evidence for the localization of such morphogenetic signals at specific locations of the developing neural primordium has suggested the concept of "secondary organizer regions", which regulate the identity and regional polarity of neighboring neuroepithelial areas one step further. In recent years, the most studied secondary organizer has been the isthmic organizer, which is localized at the hind-midbrain transition and controls anterior hindbrain and midbrain regionalization. Otx2 and Gbx2 expression is fundamental for positioning the organizer and for the establishment of molecular interactions that induce Fgf8 expression and then, stabilize the autoregulative loop of En1, Wnt1 and Pax2 expression. Temporospatial patterns of such gene expressions are necessary for the correct development of the organizer which, by a planar mechanism of induction, controls the normal development of the rostral hindbrain from r2 to the midbrain-diencephalic boundary. Fgf8 appears as the active diffusible molecule for isthmic morphogenetic activity and has been suggested to be the morphogenetic effector in other inductive activities revealed in other neuroepithelial regions.  相似文献   

17.
Rx plays a critical role in eye formation. Targeted elimination of Rx results in embryos that do not develop eyes. In this study, we have investigated the expression of Otx2, Six3, and Pax6 in Rx deficient embryos. We find that these genes show normal activation in the anterior neural plate in Rx-/- embryos, but they are not upregulated in the area of the neural plate that would form the primordium of the optic vesicle. In contrast, in homozygous Small eye embryos that lack Pax6 function, Rx shows normal activation in the anterior neural plate and normal upregulation in the optic vesicle/retinal progenitor cells. This suggests that neither Rx expression nor the formation of retinal progenitor cells is dependent on a functional copy of the Pax6 gene, but that Pax6 expression and the formation of the progenitor cells of the optic cup is dependent on a functional copy of the Rx gene.  相似文献   

18.
Here, we report in vitro generation of Math1+ cerebellar granule cell precursors and Purkinje cells from ES cells by using soluble patterning signals. When neural progenitors induced from ES cells in a serum-free suspension culture are subsequently treated with BMP4 and Wnt3a, a significant proportion of these neural cells become Math1+. The induced Math1+ cells are mitotically active and express markers characteristic of granule cell precursors (Pax6, Zic1, and Zipro1). After purification by FACS and coculture with postnatal cerebellar neurons, ES cell-derived Math1+ cells exhibit typical features of neurons of the external granule cell layer, including extensive motility and a T-shaped morphology. Interestingly, differentiation of L7+/Calbindin-D28K+ neurons (characteristic of Purkinje cells) is induced under similar culture conditions but exhibits a higher degree of enhancement by Fgf8 rather than by Wnt3a. This is the first report of in vitro recapitulation of early differentiation of cerebellar neurons by using the ES cell system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号