首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP397 is a novel antiepileptic agent and the first competitive AMPA antagonist with high receptor affinity, good in vivo potency, and oral activity. AMP397 has a structural alert (aromatic nitro group) and was mutagenic in Salmonella typhimurium strains TA97a, TA98 and TA100 without S9, but negative in the nitroreductase-deficient strains TA98NR and TA100NR. The amino derivative of AMP397 was negative in wild-type strains TA98 and TA100. AMP397 was negative in a mouse lymphoma tk assay, which included a 24h treatment without S9. A weak micronucleus induction in vitro was found at the highest concentrations tested in V79 cells with S9. AMP397 was negative in the following in vivo studies, which included the maximum tolerated doses of 320mg/kg in mice and 2000mg/kg in rats: MutaMouse assay in colon and liver (5x320mg/kg) at three sampling times (3, 7 and 31 days after the last administration); DNA binding study in the liver of mice and rats after a single treatment with [14C]-AMP397; comet assay (1x2000mg/kg) in jejunum and liver of rats, sampling times 3 and 24h after administration; micronucleus test (2x320mg/kg) in the bone marrow of mice, sampling 24h after the second administration. Based on these results, it was concluded that AMP397 has no genotoxic potential in vivo. In particular, no genotoxic metabolite is formed in mammalian cells, and, if formed by intestinal bacteria, is unable to exert any genotoxic activity in the adjacent intestinal tissue. These data were considered to provide sufficient safety to initiate clinical development of the compound.  相似文献   

2.
The genotoxic activities of three cancer chemopreventive drug candidates, CP-31398 (a cell permeable styrylquinazoline p53 modulator), SHetA2 (a flexible heteroarotinoid), and phospho-ibuprofen (PI, a derivative of ibuprofen) were tested. None of the compounds were mutagenic in the Salmonella/Escherichia coli/microsome plate incorporation test. CP-31398 and SHetA2 did not induce chromosomal aberrations (CA) in Chinese hamster ovary (CHO) cells, either in the presence or absence of rat hepatic S9 (S9). PI induced CA in CHO cells, but only in the presence of S9. PI, its parent compound ibuprofen, and its moiety diethoxyphosphoryloxybutyl alcohol (DEPBA) were tested for CA and micronuclei (MN) in CHO cells in the presence of S9. PI induced CA as well as MN, both kinetochore-positive (Kin+) and -negative (Kin-), in the presence of S9 at ≤100μg/ml. Ibuprofen was negative for CA, positive for MN with Kin+ at 250μg/ml, and positive for MN with Kin- at 125 and 250μg/ml. DEPBA induced neither CA nor MN at ≤5000μg/ml. The induction of chromosomal damage in PI-treated CHO cells in the presence of S9 may be due to its metabolites. None of the compounds were genotoxic, in the presence or absence of S9, in the GADD45α-GFP Human GreenScreen assay and none induced MN in mouse bone marrow erythrocytes.  相似文献   

3.
We conducted genetic toxicity evaluations of 11 candidate chemopreventive agents with the potential for inhibiting carcinogenesis in humans at increased risk of cancer. The compounds were evaluated for bacterial mutagenesis in the Salmonella-E. coli assay, for mammalian mutagenesis in mouse lymphoma cells, for chromosome aberrations in Chinese Hamster Ovary (CHO) cells, and for micronucleus induction in mouse bone marrow. Tested agents were indole 3-carbinol (I3C), bowman-birk inhibitor concentrate (BBIC), black tea polyphenols (BTP), farnesol, geraniol, l-Se-methylselenocysteine (SeMC), 5,6-dihydro-4H-cyclopenta[1,2]-dithiol-3-thione(DC-D3T), 4'-bromoflavone, 2,5,7,8-tetramethyl-(2R-[4R,8R,12-trimethyltridecyl] chroman-6-yloxy) acetic acid (alpha-TEA), SR13668 (2,10-dicarbethoxy-6-methoxy-5,7-dihydro-indolo[2,3-b] carbazole and SR16157 (3-O-sulfamoyloxy-7alpha-methyl-21-(2-N,N-diethylaminoethoxy)-19-norpregna-1,3,5(10)-triene). All these agents, except I3C and BTP, were negative in the Salmonella-E. coli assay in the presence and absence of metabolic activation (S9). I3C and BTP induced a weak mutagenic response in the presence and absence of S9 with strains TA100 and TA98, respectively. Of the three compounds tested in the mouse lymphoma assay (I3C, BBIC, and BTP), only BTP was mutagenic in the presence of S9. In the chromosomal aberration assay, of the 8 compounds that were tested, 4'-bromoflavone elicited a positive response in the absence of S9 only, while SR16157 was positive in the presence of S9. The results with geraniol remain inconclusive. I3C, BBIC and BTP were not tested in the chromosomal aberration assay. None of the 11 agents induced micronuclei in mouse bone marrow erythrocytes.  相似文献   

4.
Investigation of the mutagenic activity of tobacco smoke   总被引:3,自引:0,他引:3  
The genotoxic effect of whole tobacco smoke was studied employing the Salmonella/microsome mutagenicity assay, the micronucleus test in mouse bone marrow and UDS in peripheral human lymphocytes. It was established that tobacco smoke (120-480 cm3 in a 16-1 glass chamber, at 1-10 min exposure time) induced a 3-9-fold increase of spontaneous his+ reversion mutation rate in S. typhimurium TA98, but not in strains TA97a, TA100 and TA102. Addition of S9 mix obtained from the liver of Aroclor 1254-treated rats was necessary to reveal the mutagenic activity of tobacco smoke. Treatment of BDF1 mice placed in a 14-1 glass chamber with tobacco smoke (600 cm3 smoke, 2 exposures of 30 min each, with a 1-min interval between them) caused a 2-fold dose-dependent elevation of the number of micronucleated PCE in bone marrow. No cumulative effect was detected when mice were treated with tobacco smoke during 2-28 consecutive days. The effect observed 24 h after tobacco-smoke exposure was abolished 48 h later. Tobacco smoke (180 or 360 cm3) passed through the culture medium (with or without S9 mix) of human peripheral lymphocytes (the cells were then incubated for 60 min at 37 degrees C) did not increase the spontaneous rate of UDS. Both the Salmonella/microsome mutagenicity assay employing S. typhimurium TA98 strain and the micronucleus test in mouse bone marrow might be useful in studying tobacco smoke-induced mutagenesis.  相似文献   

5.
Sesamin is a major lignan that is present in sesame seeds and oil. Sesamin is partially converted to its stereoisomer, episesamin, during the refining process of non-roasted sesame seed oil. We evaluated the genotoxicity of these substances through the following tests: a bacterial reverse mutation assay (Ames test), a chromosomal aberration test in cultured Chinese hamster lung cells (CHL/IU), a bone marrow micronucleus (MN) test in Crlj:CD1 (ICR) mice, and a comet assay using the liver of Sprague-Dawley (SD) rats. Episesamin showed negative results in the Ames test with and without S9 mix, in the in vitro chromosomal aberration test with and without S9 mix, and in the in vivo comet assay. Sesamin showed negative results in the Ames test with and without S9 mix. In the in vitro chromosomal aberration test, sesamin did not induce chromosomal aberrations in the absence of S9 mix, but induced structural abnormalities at cytotoxic concentrations in the presence of S9 mix. Oral administration of sesamin at doses up to 2.0g/kg did not cause a significant increase in either the percentage of micronucleated polychromatic erythrocytes in the in vivo bone marrow MN test or in the % DNA in the comet tails in the in vivo comet assay of liver cells. These findings indicate that sesamin does not damage DNA in vivo and that sesamin and episesamin have no genotoxic activity.  相似文献   

6.
Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DBPs) in drinking water. They include chloronitromethane (CHN), dichloronitromethane (DCNM), trichloronitromethane (TCNM), bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM),dibromochloronitromethane (DBCNM), and bromodichloronitromethane (BDCNM). Previous studies of TCNM, DCNM, CNM, and TBNM found that all four were mutagenic in bacteria, and a recent study showed that all nine induced DNA damage in CHO cells. Here, all nine HNMs were evaluated in the Salmonella plate-incorporation assay +/- S9 using strains TA98, TA100, TA104, TPT100, and the glutathione transferase theta (GSTT1-1)-expressing strain RSJ100. All were mutagenic, most with and without S9. In the absence of S9, six were mutagenic in TA98, six in TA100, and three in TA104; in the presence of S9, these numbers were five, seven, and three, respectively. Thus, the HNMs-induced base substitutions primarily at GC sites as well as frameshifts. Although five HNMs were activated to mutagens in RSJ100 -S9, they produced < or =2-fold increases in revertants and potencies <506 rev/micromol. The rank order of the HNMs by mutagenic potency in TA100 +S9 was (BCNM DBNM) > (TBNM CNM > BNM DCNM BDCNM) > (TCNM = DBCNM). The mean rev/micromol for the three groupings, respectively, were 1423, 498, and 0, which classifies the HNMs as weak mutagens in Salmonella. Reaction of the dihalo and monohalo HNMs with GSH, possibly GSTT1-1, is a possible mechanism for formation of ultimate mutagenic products. Because the HNMs are mutagenic in Salmonella (present study) and potent clastogens in mammalian cells [Environ. Sci. Technol. 38 (2004) 62], their presence in drinking water warrants further research on their potential health effects.  相似文献   

7.
观察了武汉抗CD3单克隆抗体(简称WuT3)对组氨酸缺陷型鼠伤寒沙门氏菌TA97、TA98、TA100及TA102菌株的回复突变作用。结果显示在5~5000μg/皿的剂量范围内,WuT3所致的诱发回复突变菌落数与自发回复突变菌落数之比MR(Rt/Rc),无论加大鼠肝匀浆,辅酶Ⅱ及葡萄糖6-磷酸(S-9混合液)或不加S-9混合液,均不超过2。同时观察了WuT3对小鼠骨髓细胞微核率及对人外周血淋巴细胞染色体畸变率的影响,结果显示小白鼠ivWuT3,每日一次,连续2日,在25~100mg·kg-1范围内,WuT3各剂量组的微核细胞率与溶剂对照组相比均无显著性差异(P>0.05)。而环磷酰胺(CP)阳性组与溶剂对照组相比有极显著性差异(P<0.01)。WuT3在25~250μg/瓶的剂量范围内,各剂量组的染色体畸变细胞率与溶剂对照组相比无显著性差异(P>0.05),而CP组与溶剂对照组相比有极显著性差异(P<0.01)。三项试验结果均未发现WuT3有致突变性作用  相似文献   

8.
Genotoxicity of drinking water from three Korean cities   总被引:4,自引:0,他引:4  
Park JH  Lee BJ  Lee SK  Kim K  Lee KH  Che JH  Kang KS  Lee YS 《Mutation research》2000,466(2):173-178
Organic content of drinking tap water from Seoul, Taejon, and Suwon was extracted with an XAD-2 resin column and organic solvents. Four doses of the extract equivalent to 4, 2, 1, and 0.5 l water were tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100 in the presence and absence of S9 mix. The organic extracts of the water from all three cities were mutagenic in TA 98 without S9 mix and in TA 100 with and without S9 mix. The highest number of revertants per plate was found in the absence of S9 mix. Three doses of the extract (equivalent to 22, 11, and 3.7 l water) were also tested in the bone marrow micronucleus test using BDF1 mice. At the highest dose, a significant increase of the micronucleus frequency was observed. The time required to be on the effect, however, varied with the source of the water. Our results indicate that the drinking tap waters from the three cities were genotoxic clearly in the bacterial test and also in the in vivo assay with mice. As we found no genotoxicity of the source water as seen in a previous study, it is likely that the chlorination process leads to the genotoxicity of the tap water.  相似文献   

9.
Api AM  San RH 《Mutation research》1999,446(1):67-81
6-Acetyl-1,1,2,4,4,7-hexamethyltetraline (AHTN) and 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-ben zopyran (HHCB), synthetic fragrance ingredients, were evaluated for potential genotoxicity in a battery of short-term tests. Salmonella typhimurium/Escherichia coli plate incorporation and liquid preincubation assays were conducted on AHTN using tester strains TA97, TA98, TA100, TA102, TA1535, TA1537 and WP2 uvrA +/- S9 activation at doses from 8 to 5000 micrograms/plate. The plate incorporation mutagenicity assay was conducted on HHCB using tester strains TA98, TA100, TA1535, TA1537, TA1538 and WP2 uvrA +/- S9 activation at doses from 10 to 5000 micrograms/plate. An in vitro cytogenetics assay in Chinese hamster ovary (CHO) cells was conducted with AHTN and HHCB at three concentrations each with +/- S9 activation. In the non-activated study, the exposure/harvest periods were 4/20-, 20/20- and 44/44-h. In the S9 activated study, the exposure/harvest periods were 4/20- and 4/44-h. In vitro unscheduled DNA synthesis (UDS) assays were conducted in primary rat hepatocytes at concentrations between 0.15 and 50 micrograms/ml for AHTN and HHCB. In vivo mouse micronucleus assays were conducted with high doses of 1600 mg AHTN/kg and of 1500 mg HHCB/kg in corn oil. No positive responses were observed in any of the tests with HHCB. With AHTN, no positive responses were observed except for cells with structural aberrations in the in vitro cytogenetics assay in CHO cells with S9 activation at the treatment/harvest time of 4/20 h. In initial studies with AHTN, the high dose of 7.8 micrograms/ml showed 0.5% aberrant cells, with the mitotic index at 41% relative to vehicle control and cell growth inhibition in the range of 25-50%. Thus the genotoxicity findings with AHTN were limited to this one positive response; all other genotoxicity tests with AHTN were considered as negative. In particular, the negative finding in the in vivo assay supports AHTN as not likely to be mutagenic in mammalian systems. These considerations, along with other negative published data, lead to the conclusion that both AHTN and HHCB do not have significant potential to act as genotoxic carcinogens.  相似文献   

10.
Y Takizawa  N Hachiya 《Mutation research》1984,137(2-3):133-137
Two preparations of maltitol (4-O-alpha-D-glucopyranosyl-D-sorbitol), hydrogenated glucose syrups and maltitol crystal, were examined for genotoxic potential by a battery of short-term tests. In the bacterial reversion assay, maltitol induced no detectable revertants in any of the tester strains, Salmonella typhimurium TA98, TA100, TA1535, TA1537, TA1538, or Escherichia coli WP2/pKM101 at doses of 0.5-50 mg per plate with and without rat liver S9 mix. In the micronucleus test, no significant increase in the frequency of micronucleated erythrocytes was observed in bone marrow of mice after administration of the two preparations at 3.75-30 g per kg by gastric intubation.  相似文献   

11.
The mutagenic and genotoxic effects of two methylxanthines, theophylline (TH) and theobromine (TB), were assessed in the Ames mutagenicity assay (in strains TA97a, TA100, TA102 and TA104) and in vivo sister chromatid exchanges (SCEs) in bone marrow cells of mice. These are the two most commonly used nervous system stimulators throughout the world. TH is used in the long-term treatment of asthma. Bacterial mutagenicity assay showed very weak mutagenic effects of both drugs in Salmonella strains TA102 and TA104 only in certain concentrations when S9 was added to it. No mutagenic effects were observed in any other strains used in this assay either with or without metabolic activation. But results of in vivo SCE assay indicate that these two drugs can induce significant SCE in bone marrow cells of mice.  相似文献   

12.
Sulfapyridine (SP) and 5-aminosalicylic acid (5-ASA) are the two primary metabolites of the anti-inflammatory drug salicylazosulfapyridine (SASP). These two metabolites were studied for induction of chromosomal damage in mammalian cells, in vitro and in vivo, in an attempt to understand better the genetic effects produced by SASP in humans and laboratory mice. To this end, SP and 5-ASA were tested for induction of sister-chromatid exchanges (SCE) and chromosomal aberrations (Abs) in Chinese hamster ovary (CHO) cells in vitro. In addition, they were tested in vivo for induction of micronuclei (MN) in mouse bone marrow polychromatic erythrocytes (PCE). SP gave positive results in the in vitro SCE test and the in vivo MN test, and negative results in the in vitro Abs test. 5-ASA was negative in all three tests. These results indicate that it is the SP metabolite of SASP that is necessary for the induction of chromosomal damage reported to occur in humans and mice after treatment with SASP.  相似文献   

13.
To obtain insight into the identity of chemicals associated with the mutagenicity of United States National Institute of Standards and Technology (NIST) Standard Reference Materials SRM 1649 (urban dust) and SRM 1650 (diesel particulate), parallel mutagenicity tests and chemical analyses were performed on dichloromethane and sequential organic extracts of these samples. SRM 1649 and 1650 were sequentially extracted with five organic solvents of increasing polarity, in order to partition mutagenic components into discrete fractions. The solvents (with associated polarity index) were as follows: (1) hexane (0.0); (2) hexane:diethyl ether 9:1 (0.29); (3) hexane:diethyl ether 1:1 (1.45); (4) diethyl ether (2.9); (5) methanol (6.6). 0.9270 g of SRM 1649, and 0.0510 g of SRM 1650 were each extracted three times with 8 ml of each of the solvents, the three aliquots were pooled, and analysed for target organics or solvent-exchanged into DMSO for mutagenicity testing in Salmonella typhimurium strains TA98 and TA100. The dichloromethane extracts of SRM 1649 and SRM 1650 contained direct-acting mutagens in Salmonella strains TA98 and TA100; SRM 1650 was significantly more potent than SRM 1649 in either strain. Addition of S9 caused a large decrease in mutagenicity of each extract, although SRM 1650 remained more potent. An interesting pattern of mutagenicity was observed for the sequential extracts of SRM 1649 and SRM 1650: the mutagenic potency of SRM 1649 extracts increased with increasing polarity of the extraction solvent while the response of the SRM 1650 extracts was the opposite. This suggests that the direct-acting mutagens in SRM 1650 are unlike those in SRM 1649. The response, though diminished, was largely unchanged when S9 was included in the test mixture. Chemical analyses on the various extracts were performed using a Hewlett-Packard model 5890 gas chromatograph equipped with a model 5970B mass selective detector (GC-MSD), and a 0.3 microns film thickness cross-linked methyl silicone capillary column (HP 1909A-101). Selected ion monitoring (SIM) methods were used to analyze for 105 target compounds including PAHs and nitro-PAHs. Chemical analysis of the dichloromethane extracts of SRM 1649 and SRM 1650 identified three main classes of compounds: polyaromatic hydrocarbons (PAH), nitro-polyaromatic hydrocarbons (NO2-PAHs) and heterocyclics. The concentration of target compounds and the proportion of nitro-PAHs and heterocyclic compounds were considerably greater in SRM 1650 than in SRM 1649, consistent with the observed differences in their mutagenic potency. However, the different responses of the dichloromethane extracts in TA98 and TA100 suggest the presence of different (unidentified) compounds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Propineb, a dithiocarbamate fungicide, is commonly used for the control of disease in a wide range of crops in agriculture. The genotoxic effects of commercial formulation of propineb in bone marrow cells of mice was investigated in vivo by micronucleus (MN) assay. The three different concentrations of propineb (12.5, 25 and 50 μg/mL; 0.01 mL per gram) were injected intraperitoneally (i.p.) to mice for 24 and 48 h. The results of the MN assay indicated that propineb induced a significant increase in frequency of micronucleated polychromatic erythrocytes (MNPCE) at 25 and 50 μg/mL concentrations for 24 h and at the highest (50 μg/mL) concentration for 48 h when compared with negative control. Also significant reduction for the polychromatic erythrocyte/normochromatic erythrocyte (PCE/NCE) ratio which is indicative for bone marrow cytotoxicity was observed at the same concentrations for 24 and 48 h. These results lead us to the conclusion that propineb may have genotoxic and cytotoxic potential due to induction in the frequency of MN and a reduction in PCE/NCE ratio in the bone marrow cells of mice.  相似文献   

15.
Bromodichloromethane (BDCM) is commonly present in trace amounts in drinking water as a disinfection by-product. BDCM has been shown to be carcinogenic in mice and rats when given by gavage at relatively high doses. Genotoxic activity as well as induced regenerative cell proliferation may contribute to the carcinogenic potential of BDCM. The purpose of the current studies was to evaluate the ability of BDCM to induce micronuclei (MN) in bone marrow and blood of wild-type and p53(+/-) mice on the C57BL/6 and FVB/N genetic backgrounds using the inhalation route of exposure. Toxicity studies were being conducted in this laboratory with inhaled BDCM to select doses for longer-term cancer bioassays using wild-type and p53(+/-) transgenic mice on different genetic backgrounds. Bone marrow samples from these experiments were evaluated for the induction of MN after 1 and 3 weeks of exposure. Accumulation of MN in the peripheral blood was also evaluated at the 13-week time point of a cancer study with the p53(+/-) mice. For the 1-week time point, male C57BL/6 wild-type and p53(+/-) mice and FVB/N wild-type and p53(+/-) mice were exposed daily for 6h per day for 7 consecutive days to atmospheric BDCM concentrations of 0, 1, 10, 30, 100, or 150 ppm. In a second experiment, mice were exposed daily for 6h per day for 3 weeks to atmospheric BDCM concentrations of 0, 0.5, 1, 3, 10, or 30 ppm. Resulting levels of polychromatic erythrocytes (PCE) containing MN were assessed in the bone marrow. For all of the 1- and 3-week exposure groups, the only statistically significant increase in the percentage of bone marrow PCE cells containing MN was in the 1-week 100 ppm BDCM exposure group in the FVB/N wild-type mice (control 0.26% versus exposed 1.16%). C57BL/6 p53(+/-) mice and FVB/N p53(+/-) mice were exposed daily for 6 h per day for 13 weeks to atmospheric BDCM concentrations of 0, 0.5, 3, 10, or 15 ppm. MN were quantified in samples of peripheral blood. Statistically significant increases in the percentage of peripheral blood NCE cells containing MN were seen at the highest BDCM exposure group of 15 ppm in both the C57BL/6 p53(+/-) strain (control 0.36% versus exposed 0.67%) and the FVB/N p53(+/-) strain (control 0.36% versus exposed 0.86%). These data indicate weak induction of MN by BDCM, but only at high atmospheric concentrations relative to normal environmental exposures and with extended periods of exposure. Although comparisons are difficult because responses were negative or marginal, the p53 genotype or the genetic background did not appear to substantially alter susceptibility to the genotoxic effects of BDCM.  相似文献   

16.
To obtain insight into the identity of chemicals associated with the mutagenicity of United States National Institute of Standards and Technology (NIST) Standard Reference Materials SRM 1649 (urban dust) and SRM 1650 (diesel particulate), parallel mutagenicity tests and chemical analyses were performed on dichloromethane and sequential organic extracts of these samples. SRM 1649 and 1650 were sequentially extracted with five organic solvents of increasing polarity, in order to partition mutagenic components into discrete fractions. The solvents (with associated polarity index) were as follows: (1) hexane (0.0); (2) hexane:diethyl ether 9:1 (0.29); (3) hexane:diethyl ether 1:1 (1.45); (4) diethyl ether (2.9); (5) methanol (6.6). 0.9270 g of SRM 1649, and 0.0510 g of SRM 1650 were each extracted three times with 8 ml of each of the solvents, the three aliquots were pooled, and analysed for target organics or solvent-exchanged into DMSO for mutagenicity testing in Salmonella typhimurium strains TA98 and TA100.The dichloromethane extracts of SRM 1649 and SRM 1650 contained direct-actin mutagens in Salmonella strains TA98 and TA100; SRM 1650 was significantly more potent than SRM 1649 in either strain. Addition of S9 caused a large decrease in mutagenicity of each extract, although SRM 1650 remained more potent. An interesting pattern of mutagenicity was observed for the sequential extracts of SRM 1649 and SRM 1650: the mutagenic potency of SRM 1649 extracts increased with increasing polarity of the extraction solvent while the response of the SRM 1650 extracts was the opposite. This suggests that the direct-acting mutagens in SRM 1650 are unlike those in SRM 1649. The response, though diminished, was largely unchanged when S9 was included in the test mixture.Chemical analyses on the various extracts were performed using a Hewlett-Packard model 5890 gas chromatograph equipped with a model 5970B mass selective detector (GC-MSD), and a 0.3 μm film thickness cross-linked methyl silicone capillary column (HP 1909A-101). Selected ion monitoring (SIM) methods were used to analyze for 105 target compounds including PAHs and nitro-PAHs. Chemical analysis of the dichloromethane extracts of SRM 1649 and SRM 1650 identified three main classes of compounds: polyaromatic hydrocarbons (PAH), vitro-polyaromatic hydrocarbons (NO2-PAHs) and heterocyclics. The concentration of target compounds and the proportion of vitro-PAHs and heterocyclic compounds were considerably greater in SRM 1650 than in SRM 1649, consistent with the observed differences in their mutagenic potency. However, the different responses of the dichloromethane extracts in TA98 and TA100 suggest the presence of different (unidentified) compounds.Many of the target compounds were detected at least once in the sequential extracts from SRM 1649 and SRM 1650. There was no evident relationship between the occurrence of extracted organics, or classes of organics, and the polarity of solvents, except that, generally, the largest amount and variety of compounds were recovered in the first and second extracts (hexane; hexane:diethyl ether, 9:1). Preliminary examination of the chemical analysis results did not provide an explanation of the observed trends in mutagenic response. No single class of chemicals or individual compound was found to account for the observed pattern of mutagenicity. Compounds other than those identified must also contribute to the observed mutagenicity of any of the SRM 1649 and SRM 1650 extracts.  相似文献   

17.
《Mutation Research Letters》1991,262(4):239-245
Possible antimutagenic actions of probiotics - mainly lactic acid bacteria - were examined using in vitro and in vivo test systems.In the Ames test with Salmonella typhimurium TA1538 beef extract and nitrosated beef extract were used as mutagens. L. casei showed high antimutagenic activity on mutagenicity induced by nitrosated beef extract only without S9 mix, whereas Omniflora (a lyophilized preparation of lactobacilli and E. coli and its cellfree culture broth exhibited antimutagenic action only on beef extract.The actions of probiotics were more homogeneous when living animais were used in the tests. Using busulfan as a mutagen both the chromosome aberration test (with Chinese hamster bone marrow cells) and the micronucleus test (with bone marrow cells of Chinese hamsters and mice) showed strong anticlastogenic action when L. casei, Omniflora or yoghurt (with living bifiobacteria) were given orally at the same time as the mutagen. Lactobacilli were effective also after i.p. injection. Cell-free culture broths had no or only weak antimutagenic effects. Mutagen-induced chromosome aberrations and micronuclei were reduced by up to 80% by the lactobacilli.  相似文献   

18.
Aiming to investigate the possibility of electromagnetic fields (EMF) developed by nonionizing radiation to be a noxious agent capable of inducing genotoxicity to humans, in the current study we have investigated the effect of 910-MHz EMF in rat bone marrow. Rats were exposed daily for 2 h over a period of 30 consecutive days. Studying bone marrow smears from EMF-exposed and sham-exposed animals, we observed an almost threefold increase of micronuclei (MN) in polychromatic erythrocytes (PCEs) after EMF exposure. An induction of MN was also observed in polymorphonuclear cells. The induction of MN in female rats was less than that in male rats. The results indicate that 910-MHz EMF could be considered as a noxious agent capable of producing genotoxic effects.  相似文献   

19.
McN-5195, (±)trans-3-(2-bromophenyl)octahydroindolizine, a novel analgesic, was tested for genotoxic potential in a battery of tests with endpoints of mutagenicity, chromosomal alterations and DNA damage/ repair. McN-5195 was not mutagenic when tested in the Ames test using strains TA98, TA100, TA1535, TA1537 and TA 1538, in the absence of metabolic activation and in the presence of Aroclor 1254-induced rat or hamster S-9. Negative results were also obtained in the mouse lymphoma assay in the absence of activation, but reproducible mutagenic responses were seen in this mammalian cell assay in the presence of rat S-9 at high levels of induced toxicity (reduced cell growth). Testing of the enantiomers of McN-5195 in this assay supported these findings. A predominance of small mutant colonies in the mouse lymphoma assay suggested a potential chromosomal effect of McN-5195. This was confirmed with positive findings in an in vitro cytogenetics assay using CHO cells, again at toxic exposure levels and only in the presence of S-9. McN-5195 did not induce DNA repair in the primary rat hepatocyte/DNA repair assay, nor did it induce alterations in vivo of chromosome structure or number when tested in a rat bone marrow cytogenetics assay. The findings from this battery of tests indicate that McN-5195 has modest genotoxic activity when tested in the presence of rat liver S-9 in in vitro systems sensitive to cytogenetic change. The absence of genotoxicity in vitro in Salmonella and intact liver cells and in vivo in rat bone marrow suggests that McN-5195 is unlikely to present a genotoxic risk to whole animals.Abbreviations 2-AA 2-anthramine - 9-AA 9-aminoacridine HCI - 2-AAF 2-acetylaminofluorene - AO acridine orange - CHO Chinese hamster ovary - CP cyclophosphamide - EMS ethylmethane sulfonate - 3H-dThd methyl-3H-thymidine - LDH lactate dehydrogenase - 3-MCA 3-methylcholanthrene - McN-5195 (±)-trans-3-(2-bromophenyl) octahydroindolizine - McN-5195-11 hydrochloride salt of McN-5195 - Na azide sodium azide - RCG relative clonal growth - RSG relative suspension growth - RTG relative total growth - SMF spontaneous mutation frequency - TEM triethylenemelamine - TFT trifluorothymidine  相似文献   

20.
以秋水仙素有丝分裂(CM)效应、微核(MN)及染色体畸变(CA)三种体内细胞遗传学指标综合评估了有丝分裂抑制剂(秋水仙素、益康唑及对苯二酚)诱发小鼠骨髓细胞非整倍体的效应。结果表明:秋水仙素是典型的多倍体及非整倍体诱发剂。益康唑对细胞有丝分裂有与秋水仙素相类似的效应,进一步分析表明其在哺乳动物体细胞内无非整倍体诱发效应。对苯二酚在哺乳动物活体实验系统中,可能具有诱发非整倍体及染色体结构畸变的多种遗传毒性。结果提示三种细胞遗传学指标能为非整倍体诱发剂的检出提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号