首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The physiological and morphological properties of the giant interneurons in the hermit crab Pagurus pollicaris are described. The cell bodies are located anteriorly in the supraesophageal ganglion, close to the mid-line. Each cell sends a neurite posteriorly and then laterally, so that they cross over in the center of the ganglion. Each axon then branches: one branch runs laterally while the other travels posteriorly and leaves the ganglion in the circumesophageal connective on the side contralateral to the cell body. The giant axons travel in the circumesophageal connectives and through the thoracic and abdominal ganglia without branching. Each giant axon makes synaptic contact with its ipsilateral giant abdominal flexor motor neuron and with a second flexor motor neuron that has its axon in the contralateral third root. In the supraesophageal ganglion there is a bidirectional synapse between the two giant interneurons. Intracellular recordings from the giant axons show that there is a delay of 0.5 to 0.75 ms that cannot be accounted for by spike propagation along the axons, and may be accounted for by a chemical synapse between the giant interneurons.  相似文献   

2.
Two types of photoreceptors are found in the median ocellus of Limulus. One type is maximally sensitive to ultraviolet (UV) light, the other to green light; they are called UV and VIS cells, respectively. Biphasic receptor potentials, consisting of a small initial hyperpolarizing phase and a later slow depolarizing phase, can be recorded from both receptor types. These biphasic responses are elicited in UV cells in response to long-wavelength light, and in VIS cells in response to ultraviolet light. Another type of hyperpolarizing response can be recorded in UV cells: after a bright ultraviolet stimulus, the cell remains depolarized; long-wavelength light rapidly returns the membrane potential to its value preceding ultraviolet illumination (this long-wavelength-induced potential change is called a "repolarizing response"). Also, a long-wavelength stimulus superimposed during a UV stimulus elicits a sustained repolarizing response. A third cell type (arhabdomeric cell) found in the median ocellus generates large action potentials and is maximally sensitive to UV light. Biphasic responses and repolarizing responses also can be recorded from arhabdomeric cells. The retina is divided into groups of cells; both UV cells and VIS cells can occur in the same group. UV cells in the same group are electrically coupled to one another and to an arhabdomeric cell.  相似文献   

3.
Each ocellar nerve in the house cricket Acheta domesticus contains giant nerve fibers of 10-15 μ diameter, characterized in Golgi Cox preparations by a single row of short collaterals which runs along nearly the entire length of a fiber. Numerous long collaterals are given off by thin fibers in the ocellar nerve; medium-size fibers give off relatively few collaterals. The lateral ocellar tracts extend posteriorly through the dorsal protocerebrum, crossing the protocerebral bridge dorsally. The smaller median ocellar tract runs more ventrally through the pars intercerebralis; posterior to the bridge its fibers turn out toward the lateral nerves. Golgi and cobalt preparations reveal branching of giant and mediu_-size ocellar fibers posterior to the bridge at two levels, forming bilateral regions of ocellar neuropile. No ocellar processes appear to be given off to the corpora pedunculata, centra! body, nervi corporis cardiaci, antenna! lobes, or circumesophageal connectives; it is uncertain whether ocellar collaterals extend into the protocerebral bridge or optic lobes. Cell bodies of giant and medium-sized fibers are located in the pars intercerebralis.  相似文献   

4.
The retina and optic nerve of Strombus luhuanus were examined by transmission electron microscopy in order to provide an ultrastructural basis for their electrophysiological responses, described elsewhere. The retina exhibits a distinct rhabdomeric layer and layers of cell nuclei and neuropile. These layers are comprised predominantly of three cell types that can be readily distinguished on the basis of their shape, their nuclei and cytoplasmic inclusions such as vesicles and filaments. One type of cell, apparently a photoreceptor that depolarizes in response to photic stimulation, possesses a long distal segment with microvilli; such distal segments comprise the bulk of the rhabdomeric layer. A second cell type, which appears to be supportive in function, contains a bundle of tightly packed tonofilaments that extend across the retina from the capsule to the vitreous body; this cell is quite narrow except in the region near the rhabdomeric layer, where it is expanded and wraps around the other cell types. A third type of cell possesses many short microvilli that project from its apical end into the rhabdomeric layer; it may be a second type of photoreceptor or another type of neuron. The retina also contains bundles of cilia that appear to project from a possible fourth type of cell. The layer of neuropile contains numerous processes that exhibit a variety of vesicle types and structures generally associated with synapses; these appear to play a role in mediating inhibitory and excitatory interactions between the retinal neurons. The optic nerve exhibits two populations of fiber distinguishable on the basis of mean diameter. Fibers in these two populations apparently yield “on” and “off” discharges in response to photic stimulation of the eye.  相似文献   

5.
Summary The fine structure of the brain of the monogenean Gastrocotyle trachuri (Platyhelminthes) is described. The brain consists of a central neuropile surrounded by a layer of cell bodies. The neuropile is composed of a fine meshwork of naked neurites which contain various types of vesicles and other organelles although microtubules have not been found. Five kinds of vesicles; three clear types and two dense types, were found within the neuropile.Two types of neuronal cell body were identified on the basis of their vesicle contents although it is possible that these two types represent the extremes of a single cell type. A characteristic feature of the neuronal perikarya of Gastrocotyle is the presence of deep infoldings into the cell of the outer membrane. These infoldings often contain fibrous interstitial material and in a number of cases hemidesmosome-like structures have been found in the distended, distal end of the infoldings.  相似文献   

6.
Neurosecretory (Nsy) cells within the cerebral ganglion of Lumbricus terrestris were classified ultrastructurally. The Nsy cells within the subesophageal ganglion, nerve cord ganglion, and the peripheral nervous system were also examined. A comparative survey of Nsy cells of four other species of oligochaetes, Eisenia feotida, octolasion cyaneum, Dendrobeona subrubicunda, and Allolophora longa, was also carried out. Seven cell types (A1, A2, A3, A4, A5, C, and SEF), distinguished by special cytological and ultrastructural features, were found within the cerebral ganglion. Distribution of these cells inside and outside the cerebral ganglion was studied in detail by light and electron microscopy. The nerve terminals of each cell type were followed into the neuropile region. Exocytosis from cell bodies appears to be the main release mechanism for the Nsy granules, whereas small Nsy vesicles are released through synapses in the neuropile. Peripheral fibers of some cell types (A1, A2, and A3) extend through the capsule to the pericapsular epithelium. It is possible that Nsy cells secrete hormones from their cell bodies and peripheral processes and that their centrally directed axons release modulators/transmitters within the neuropile.  相似文献   

7.
During ontogenetic development in the definitive host, the cerebral ganglia of the parasitic flatworm Fasciola hepatica lose their cell rind integrity and develop specialized nerve processes. The organization and cytological features of the central nervous system were examined during three developmental stages in the parasitic life cycle of F. hepatica to determine when the changes occur. The cerebral ganglion cell bodies of migrating juvenile worms (5 days post-infection) are organized into a one-cell-thick rind that surrounds a central neuropile composed of small unmyelinated nerve processes (less than 3 microns in diameter). In young, sexually-immature adult worms (30 days post-infection), the cell bodies of the ganglia are no longer organized into a complete or tight cell rind around the ganglia. In addition, large diameter ('giant') unmyelinated nerve processes (greater than 12 microns) are found in the neuropile area. These giant nerve processes are also found in the transverse commissure and the longitudinal nerve cords. In mature adult worms (4-6 months post-infection), the rind of nerve cell bodies has completely disappeared and cell bodies are scattered around and within the neuropile. More than half of the volume of the mature adult neuropile is composed of giant nerve processes. The three developmental stages of the parasite that were used in this study differ significantly in their sizes, behaviours and microhabitat locations in the host. The results suggest that the organizational and morphological changes in the ganglia reflect selective adaptations to changes in the parasitic microenvironment.  相似文献   

8.
In addition to the pigmented ocelli, four different types of photoreceptor-like organs without shading pigment have been found in Saccocirrus papillocercus and S. krusadensis. The sensory cells of these presumed ocelli are either ciliary or rhabdomeric with ciliary rudiments. With the exception of the multicellular type-2 ocelli they are bicellular consisting of a sensory cell and a supportive cell. In each ocellus the supportive cell forms a thin cup-shaped envelope around the sensory elements. In the type-2 ocellus, 7 supportive cells form an ovoid cavity leaving openings through which dendritic processes of an equal number of sensory cells enter the cavity. The pigmented ocelli possess an ocellar cavity communicating with the exterior through a pore in the eyecup, ciliary rudiments in both sensory and supportive cell, and additional non-photoreceptive sensory cells in the opening of the eyecup. The sensory organs show characteristic differences between the two species, such as presence or absence of a particular type of ocellus (type 2 is absent in S. krusadensis, type 3 in S. papillocercus), number of cilia in type-4 ocelli, density of microvilli, number of non-photoreceptive sensory cells in the pore of the pigmented ocellus, etc. These differences provide important characters which can be used for discrimination either of species or of subgeneric taxa in Saccocirrus. The phylogenetic significance of the different photoreceptive organs is discussed.  相似文献   

9.
This study, using the cobalt chloride technique, clarifies the origin of the giant axons in the cockroach, Periplaneta. Each giant axon in the ventral nerve cord arises from a single cell body located in the sixth abdominal ganglion. The position of the soma is always contralateral to the giant axon; it projects anteriorly. In six giant neurons, the axonic and dendritic branches are ipsilateral while the somata are contralateral. In two neurons, both the soma and the dendritic branches are ipsilateral while the axons are contralateral. The dendritic arborizations of the giant neurons form a dense and compact mass of neuropile in each half of the posterior and middorsal part of the ganglion where sensory fibers, primarily from the cercal nerves terminate. The relation of these findings to earlier electrophysiological studies is discussed.  相似文献   

10.
Five types of cell contacts and other membrane specializations were found in the ocellus of the adult wasp, Paravespula germanica L. (Hymenoptera : Vespidae), based on freeze-fracture replicas and thin sections.Septate junctions alongside small gap junctions are present between iris cells and between corneagenous cells. Gap junctions are sometimes observed between glial cell processes. Photoreceptor cells and glial cells are frequently connected by scalariform junctions. Tight junction-like structures are found on receptor-cell membranes near rhabdomeric microvilli. Desmosomes are widespread in the ocellus, connecting iris cells, corneagenous cells, receptor cells, and glial cell processes. Desmosomes are found next to septate junctions.Glial membranes connected to receptor cells have a non-junctional type of membrane specializations, consisting of intramembraneous particles arranged in a rhombic pattern. Interestingly, both particle arrays and scalariform junctions are often adjacent to each other. Furthermore, a conspicuous modification of the cell surface in freeze cleaved cells is seen between adjacent glial cells intermediating two receptor cells.  相似文献   

11.
The fine structure of the nerve cells and the neuropile in the brain of acoels and the peripheral nervous system and the synapses have been studied. On the basis of the vesicle content, four nerve cell types are distinguished. The presumptive glial cell is also visualized. The synapses appear to be of the following four types: asymmetrical, ribbon, symmetrical and electrical. The peripheral nervous system consists of a subepithelial and a submuscular plexus; they present asymmetrical and symmetrical synapses. In the light of these results, the nervous system of acoels should no longer be considered as primitive.  相似文献   

12.
Four types of mesoderm cells (pigment cells, blastocoelar cells, coelomic pouch cells and circumesophageal muscle cells) are derived from secondary mesenchyme cells (SMC) in sea urchin embryos. To gain information on the specification and differentiation processes of SMC-derived cells, we studied the exact number and division cycles of each type of cell in Hemicentrotus pulcherrimus. Numbers of blastocoelar cells, coelomic pouch cells and circumesophageal muscle fibers were 18.0 +/- 2.0 (36 h post-fertilization (h.p.f.)), 23.0 +/- 2.5 (36 h.p.f.) and 9.5 +/- 1.3 (60 h.p.f.), respectively, whereas the number of pigment cells ranged from 40 to 60. From the diameters of blastocoelar cells and coelomic pouch cells, the numbers of division cycles were elucidated; these two types of cells had undertaken 11 rounds of cell division by the prism stage, somewhat earlier than pigment cells. To determine the relationship among the four types of cells, we tried to alter the number of pigment cells with chemical treatment and found that CH3COONa increased pigment cells without affecting embryo morphology. Interestingly, the number of blastocoelar cells became smaller in CH3COONa-treated embryos. In contrast, blastocoelar cells were markedly increased with NiCl2 treatment, whereas the number of pigment cells was markedly decreased. The number of coelomic pouch cells and circumesophageal muscle fibers was not affected with these treatments, indicating that coelomic pouch and muscle cells are specified independently of, or at much later stages, than pigment and blastocoelar cells.  相似文献   

13.
The Lamina ganglionaris (first optic neuropile) of the decapod crustacean Pandalus borealis has its optic cartridges (synaptic compartments) arranged in horizontal rows. Each optic cartridge contains seven receptor axon terminals and the branching axis fibres of five monopolar second order neurons. Four types of monopolar neurons are classified. Their cell bodies are arranged in two layers. The inner layer contains the cell bodies of exclusively one of these types, and each cartridge is invaded by two neurons of this neuron type (type M 1:a and M 1:b). The outer layer contains the cell bodies of the remaining three types (M 2, M3 and M4). One gives rise to a large radially branched axis fibre in the centre of the cartridge. The other two have wide branches which may make inter-cartridge contacts, one proximally and the other distally in the plexiform layer, which is clearly bistratified. The receptor axons terminate in two levels corresponding to these strata. Two sets of tangenital fibres form networks in the proximal and the mid-portion of the lamina. Both networks have fibres with primary branches in the vertical plane and secondary branches in the horizontal plane. The fibres of the networks are derived from axons that pass from the second optic neuropile, the medulla externa.  相似文献   

14.
Summary Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

15.
Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s]-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunoreactive arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia. This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

16.
The planktonic barnacle larva has a single median ocellus (nauplius eye), while the adult possesses two distinct sets of photoreceptors; a pair of lateral ocelli and a single median ocellus. The nauplius eye of the cypris larva of Balanus amphitrite hawaiiensis is composed of 14 visual cells grouped into three components (a pair of lateral components and a single ventral component) surrounding two centrally located pigment cells; each lateral component consists of 5 visual cells and the ventral component, 4 visual cells. In each component, the rhabdom is made up of apposing microvilli arising directly from the neighboring visual cell bodies.
During metamorphosis into the adult form, the three components of the median ocellus become separated. Each lateral component migrates laterally on the mantle and is remodeled into the adult lateral ocellus, losing two visual cells but gaining new pigment and tapetum cells in the process. The ventral component remains in the mid portion and becomes the adult median ocellus without fundamental modification in composition. The visual cells in both ocelli undergo a marked increase in volume and form many finger-like dendrites. Rhabdomes are made up of interdigitating microvilli arising from the the dendrite tips.  相似文献   

17.
The neuroarchitecture of Acoela has been at the center of morphological debates. Some authors, using immunochemical tools, suggest that the nervous system in Acoela is organized as a commissural brain that bears little resemblance to the central, ganglionic type brain of other flatworms, and bilaterians in general. Others, who used histological staining on paraffin sections, conclude that it is a compact structure (an endonal brain; e.g., Raikova 2004; von Graff 1891; Delage Arch Zool Exp Gén 4:109-144, 1886). To address this question with modern tools, we have obtained images from serial transmission electron microscopic sections of the entire hatchling of Symsagittifera roscoffensis. In addition, we obtained data from wholemounts of hatchlings labeled with markers for serotonin and tyrosinated tubulin. Our data show that the central nervous system of a juvenile S. roscoffensis consists of an anterior compact brain, formed by a dense, bilobed mass of neuronal cell bodies surrounding a central neuropile. The neuropile flanks the median statocyst and contains several types of neurites, classified according to their types of synaptic vesicles. The neuropile issues three pairs of nerve cords that run at different dorso-ventral positions along the whole length of the body. Neuronal cell bodies flank the cords, and neuromuscular synapses are abundant. The TEM analysis also reveals different classes of peripheral sensory neurons and provides valuable information about the spatial relationships between neurites and other cell types within the brain and nerve cords. We conclude that the acoel S. roscoffensis has a central brain that is comparable in size and architecture to the brain of other (rhabditophoran) flatworms.  相似文献   

18.
Glial cells subserve a number of essential functions during development and function of the Drosophila brain, including the control of neuroblast proliferation, neuronal positioning and axonal pathfinding. Three major classes of glial cells have been identified. Surface glia surround the brain externally. Neuropile glia ensheath the neuropile and form septa within the neuropile that define distinct neuropile compartments. Cortex glia form a scaffold around neuronal cell bodies in the cortex. In this paper we have used global glial markers and GFP-labeled clones to describe the morphology, development and proliferation pattern of the three types of glial cells in the larval brain. We show that both surface glia and cortex glia contribute to the glial layer surrounding the brain. Cortex glia also form a significant part of the glial layer surrounding the neuropile. Glial cell numbers increase slowly during the first half of larval development but show a rapid incline in the third larval instar. This increase results from mitosis of differentiated glia, but, more significantly, from the proliferation of neuroblasts.  相似文献   

19.
Two types of presumed synaptic contacts have been recognized by electron microscopy in the synaptic plexus of the median ocellus of the dragonfly. The first type is characterized by an electron-opaque, button-like organelle in the presynaptic cytoplasm, surrounded by a cluster of synaptic vesicles. Two postsynaptic elements are associated with these junctions, which we have termed button synapses. The second synaptic type is characterized by a dense cluster of synaptic vesicles adjacent to the presumed presynaptic membrane. One postsynaptic element is observed at these junctions. The overwhelming majority of synapses seen in the plexus are button synapses. They are found most commonly in the receptor cell axons where they synaptically contact ocellar nerve dendrites and adjacent receptor cell axons. Button synapses are also seen in the ocellar nerve dendrites where they appear to make synapses back onto receptor axon terminals as well as onto adjacent ocellar nerve dendrites. Reciprocal and serial synaptic arrangements between receptor cell axon terminals, and between receptor cell axon terminals and ocellar nerve dendrites are occasionally seen. It is suggested that the lateral and feedback synapses in the median ocellus of the dragonfly play a role in enhancing transients in the postsynaptic responses.  相似文献   

20.
The otoplanid nervous system investigated in Otoplana truncaspina Lanfranchi, 1969 and Parotoplanella heterorhabditica Lanfranchi, 1969 consits of: (a) an ellipsoidal cerebral ganglion located between the gut and the cephalic intestine and invested by a fibrillar collagen-like capsule 0.3 μm thick; (b) anterior extracapsular ganglion cell clusters; (c) a peripheral nerve plexus locally thickened at the level of the epithelial sensory and glandular areas, with extensive synaptic connections. At least two neuron types can be identified within the ganglion: (a) an inner layer close to the central neuropile of the 1st type of neurons, showing a vesicular cytoplasm rich in RER and Golgi complexes processing both round, clear, 25–45 nm in diameter, and dense cored vesicles, 50–80 nm in diameter; (b) an outer layer of the 2nd type of neurons, adjoining the capsule and filled with uniformly dense vesicles, 60–90 nm in diameter. Synaptic endings in the neuropile are provided with clear vesicles and dense cored vesicles or uniformly dense vesicles. The presynaptic side has paramembranous projections channelling the vesicles to the active zone; omega-like profiles are also observed. Thin banded muscle fibres run within the brain. A comparison is drawn with the other turbellarian neuron types described in the literature, to suggest their possible function. The functional implications of the synaptic ultrastructure are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号