首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA(miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia(AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia(CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias.  相似文献   

2.
Troxacitabine is a cytotoxic deoxycytidine analogue with an unnatural L-configuration, which is activated by deoxycytidine kinase (dCK). The configuration is responsible for differences in the uptake and metabolism of troxacitabine compared to other deoxynucleoside analogues. To determine whether troxacitabine has an advantage over other nucleoside analogues several cell lines resistant to cladribine and gemcitabine were exposed to troxacitabine, while blast cells from pediatric leukemia patients were tested for cross-resistance with other deoxynucleoside analogues. The gemcitabine resistant AG6000 (IC50: >3000 nM), and the cladribine resistant CEM (IC50: 150 nM) and HL-60 (IC50: >3000 nM) cell lines, all with no or decreased dCK expression, were less sensitive to troxacitabine than their wild type counterparts (IC50; A2780: 410, CEM: 71 and HL-60: 158 nM). dCK protein expression in CEM was higher than in HL-60, which, in turn, was higher than in A2780. Catalytically inactive p53 seems to increase the sensitivity to troxacitabine. The patient samples showed a large range of sensitivity to troxacitabine, similar to other deoxynucleoside analogues. Cross-resistance with all other deoxynucleoside analogues was observed.  相似文献   

3.
The anti-apoptotic protein Bcl-2 is a well-known and attractive therapeutic target for cancer. In the present study the solution-phase T3P-DMSO mediated efficient synthesis of 2-amino-chromene-3-carbonitriles from alcohols, malanonitrile and phenols is reported. These novel 2-amino-chromene-3-carbonitriles showed cytotoxicity in human acute myeloid leukemia (AML) cell lines. Compound 4g was found to be the most bioactive, decreasing growth and increasing apoptosis of AML cells. Moreover, compound 4g (at a concentration of 5 µM) increased the G2/M and sub-G1 (apoptosis) phases of AML cells. The AML cells treated with compound 4g exhibited decreased levels of Bcl-2 and increased levels of caspase-9. In silico molecular interaction analysis showed that compound 4g shared a similar global binding motif with navitoclax (another small molecule that binds Bcl-2), however compound 4g occupies a smaller volume within the P2 hot spot of Bcl-2. The intermolecular π-stacking interaction, direct electrostatic interactions, and docking energy predicted for 4g in complex with Bcl-2 suggest a strong affinity of the complex, rendering 4g as a promising Bcl-2 inhibitor for evaluation as a new anticancer agent.  相似文献   

4.
Combined bezafibrate (BEZ) and medroxyprogesterone acetate (MPA) exert unexpected antileukaemic activities against acute myeloid leukaemia (AML) and these activities are associated with the generation of reactive oxygen species (ROS) within the tumor cells. Although the generation of ROS by these drugs is supported by preceding studies including our own, the interrelationship between the cellular effects of the drugs and ROS generation is not well understood. Here we report the use of NMR metabolomic profiling to further study the effect of BEZ and MPA on three AML cell lines and to shed light on the underlying mechanism of action. For this we focused on drug effects induced during the initial 24 hours of treatment prior to the onset of overt cellular responses and examined these in the context of basal differences in metabolic profiles between the cell lines. Despite their ultimately profound cellular effects, the early changes in metabolic profiles engendered by these drugs were less pronounced than the constitutive metabolic differences between cell types. Nonetheless, drug treatments engendered common metabolic changes, most markedly in the response to the combination of BEZ and MPA. These responses included changes to TCA cycle intermediates consistent with recently identified chemical actions of ROS. Notable amongst these was the conversion of α-ketoglutarate to succinate which was recapitulated by the treatment of cell extracts with exogenous hydrogen peroxide. These findings indicate that the actions of combined BEZ and MPA against AML cells are indeed mediated downstream of the generation of ROS rather than some hitherto unsuspected mechanism. Moreover, our findings demonstrate that metabolite profiles represent highly sensitive markers for genomic differences between cells and their responses to external stimuli. This opens new perspectives to use metabolic profiling as a tool to study the rational redeployment of drugs in new disease settings.  相似文献   

5.
Previous studies have demonstrated that the small molecule thrombopoietin (TPO) mimetic, eltrombopag (E), induces apoptosis in acute myeloid leukemia (AML) cells. Here, we sought to define the mechanism of the anti-leukemic effect of eltrombopag. Our studies demonstrate that, at a concentration of 5 μM E in 2% serum, E induces apoptosis in leukemia cells by triggering PARP cleavage and activation of caspase cascades within 2–6 hours. The induction of apoptotic enzymes is critically dependent on drug concentration and the concentration of serum. This effect is not associated with an alteration in mitochondrial potential but is associated with a rapid decrease in a reactive oxygen species (ROS) in particular hydrogen peroxide (H2O2). Interestingly, E also decreases mitochondrial maximal and spare respiratory capacities suggesting an induced mitochondrial dysfunction that may not be readily apparent under basal conditions but becomes manifest only under stress. Co-treatment of MOLM14 AML cells with E plus Tempol or H2O2 provides a partial rescue of cell toxicity. Ferric ammonioum citrate (FAC) also antagonized the E induced toxicity, by inducing notable increase in ROS level. Overall, we propose that E dramatically decreases ROS levels leading to a disruption of AML intracellular metabolism and rapid cell death.  相似文献   

6.

Introduction

Treatment failure in acute myeloid leukemia is probably caused by the presence of leukemia initiating cells, also referred to as leukemic stem cells, at diagnosis and their persistence after therapy. Specific identification of leukemia stem cells and their discrimination from normal hematopoietic stem cells would greatly contribute to risk stratification and could predict possible relapses.

Results

For identification of leukemic stem cells, we developed flow cytometric methods using leukemic stem cell associated markers and newly-defined (light scatter) aberrancies. The nature of the putative leukemic stem cells and normal hematopoietic stem cells, present in the same patient''s bone marrow, was demonstrated in eight patients by the presence or absence of molecular aberrancies and/or leukemic engraftment in NOD-SCID IL-2Rγ-/- mice. At diagnosis (n = 88), the frequency of the thus defined neoplastic part of CD34+CD38- putative stem cell compartment had a strong prognostic impact, while the neoplastic parts of the CD34+CD38+ and CD34- putative stem cell compartments had no prognostic impact at all. After different courses of therapy, higher percentages of neoplastic CD34+CD38- cells in complete remission strongly correlated with shorter patient survival (n = 91). Moreover, combining neoplastic CD34+CD38- frequencies with frequencies of minimal residual disease cells (n = 91), which reflect the total neoplastic burden, revealed four patient groups with different survival.

Conclusion and Perspective

Discrimination between putative leukemia stem cells and normal hematopoietic stem cells in this large-scale study allowed to demonstrate the clinical importance of putative CD34+CD38- leukemia stem cells in AML. Moreover, it offers new opportunities for the development of therapies directed against leukemia stem cells, that would spare normal hematopoietic stem cells, and, moreover, enables in vivo and ex vivo screening for potential efficacy and toxicity of new therapies.  相似文献   

7.

Background

Pterostilbene (PTER) is a dimethylated analog of the phenolic phytoalexin, resveratrol, with higher anticancer activity in various tumors. Herein, the molecular mechanisms by which PTER exerts its anticancer effects against acute myeloid leukemia (AML) cells were investigated.

Methodology and Principal Findings

Results showed that PTER suppressed cell proliferation in various AML cell lines. PTER-induced G0/G1-phase arrest occurred when expressions of cyclin D3 and cyclin-dependent kinase (CDK)2/6 were inhibited. PTER-induced cell apoptosis occurred through activation of caspases-8-9/-3, and a mitochondrial membrane permeabilization (MMP)-dependent pathway. Moreover, treatment of HL-60 cells with PTER induced sustained activation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)1/2, and inhibition of both MAPKs by their specific inhibitors significantly abolished the PTER-induced activation of caspases-8/-9/-3. Of note, PTER-induced cell growth inhibition was only partially reversed by the caspase-3-specific inhibitor, Z-DEVE-FMK, suggesting that this compound may also act through a caspase-independent pathway. Interestingly, we also found that PTER promoted disruption of lysosomal membrane permeabilization (LMP) and release of activated cathepsin B.

Conclusion

Taken together, our results suggest that PTER induced HL-60 cell death via MAPKs-mediated mitochondria apoptosis pathway and loss of LMP might be another cause for cell apoptosis induced by PTER.  相似文献   

8.
The mTOR (mammalian target of rapamycin) serine threonine kinase is involved in the regulation of the cell cycle, apoptosis and angiogenesis. mTOR inhibitors (rapamycin, or analogues such as CCI-779, RAD001, AP23573), which have been shown to have a potent anti-neoplastic effect in many solid tumour models, are now being used in clinical trials. Recent data have shown that the mTOR pathway is also aberrantly activated in hematological malignancies including acute myeloid leukemia (AML). This disease still has a bad prognosis and new therapeutic strategies are required. Rapamycin, used at low concentrations, induces the profound inhibition of AML cell clonogenic properties in 60% of cases while sparing their normal counterparts. Moreover, clinical responses have been achieved in poor-risk AML patients. In this review, we discuss the possible mechanisms of mTOR activation, the mechanisms involved in the inhibition of cell proliferation by rapamycin, the possible resistance mechanisms and ways of improving rapamycin efficacy in the context of AML.  相似文献   

9.
《Cell reports》2020,30(3):739-754.e4
  1. Download : Download high-res image (99KB)
  2. Download : Download full-size image
  相似文献   

10.
Nestin蛋白是一种神经干细胞标志物,参与组织修复,并且在一些肿瘤细胞中表达。最近研究报道称nestin可能参与肿瘤细胞恶性增殖及细胞侵袭。在急性淋巴细胞白血病(acute lymphoid leukemia,ALL)小鼠模型中,白血病增殖细胞(leukemia-propagating cells,LPCs)可形成一个抗药性niche,其中nestin阳性细胞参与该niche形成。为探索nestin基因在白血病患者的临床表达情况,通过RT-PCR和Western-blot实验方法 ,检测了50位髓系白血病患者的nestin基因的临床表达情况。结果发现,在50位髓系白血病患者(38位AML,12位CML)中,42位患者表达nestin基因mRNA,6位患者表达nestin蛋白,并且nestin基因表达水平和患者血红蛋白、血小板、细胞因子和T淋巴细胞数并不存在相关性,但是高白细胞白血病患者表现出nestin基因mRNA水平高表达。虽然nestin基因和患者完全缓解率(complete remission,CR)并不存在联系,但是nestin基因在髓系白血病异常表达,说明其可能作为一种诊断AML或CML的生物标记物。  相似文献   

11.
目的:探讨川芎嗪对急性髓性白血病KG-1a细胞表面标志物的影响。方法:通过体外细胞培养技术,利用中药有效成分单体干预细胞生长,运用MTT法及流式细胞术检测了经川芎嗪干预后的KG-1a细胞表面标志物CD34、CD33、CD123与CD7、CD56、CD44表达。结果:川芎嗪干预KG-1a细胞48小时后,细胞表面标志物CD34+CD33+、CD34+CD123+、CD33+CD123+表达率较对照组明显减少(P0.05),但是对于CD34+表达率无明显作用,同时,川芎嗪干预KG-1a细胞48小时后,KG-1a细胞表面标志物CD7、CD56、CD44荧光强度与对照组比较明显降低(P0.05),但是对KG-1a细胞表面标志物CD7、CD56、CD44表达率无明显影响,与对照组比较无统计学意义(P0.05)。结论:川芎嗪逆转白血病耐药作用,除能够降低MDR、P-gp高表达外,能够降低白血病干细胞特异性表面标志物CD34+CD123+、CD34+CD33+、CD33+CD123+、CD7、CD56、CD44表达水平,从白血病干细胞水平逆转多药耐药。  相似文献   

12.
13.
The current interest in epigenetic priming is underpinned by the belief that remodelling of the epigenetic landscape will sensitise tumours to subsequent therapy. In this pre-clinical study, paediatric AML cells expanded in culture and primary AML xenografts were treated with decitabine, a DNA demethylating agent, and cytarabine, a frontline cytotoxic agent used in the treatment of AML, either alone or in combination. Sequential treatment with decitabine and cytarabine was found to be more effective in reducing tumour burden than treatment with cytarabine alone suggesting that the sequential delivery of these agents may a have real clinical advantage in the treatment of paediatric AML. However we found no evidence to suggest that this outcome was dependent on priming with a hypomethylating agent, as the benefits observed were independent of the order in which these drugs were administered.  相似文献   

14.
急性髓系白血病(AML)是造血干/祖细胞恶性克隆性疾病,以骨髓、血液和其他组织中髓系起源的异常原始细胞增殖为特征。“3+7”诱导方案(蒽环类药物联合阿糖胞苷)一直是治疗AML的基石,但仍有部分AML患者无法耐受强化疗或完全缓解后复发,目前AML的总体疗效仍不乐观。因此,寻找新药物以提高AML患者疗效具有重要的临床意义。越来越多的研究证明,表观遗传对AML的发生、发展起重要作用。组蛋白去乙酰化酶抑制剂(HDACi)是表观遗传修饰的分子靶向药物,可抑制组蛋白去乙酰化酶(HDAC)的活性,上调组蛋白赖氨酸的乙酰化水平,目前已应用于AML临床研究中,在联合治疗中显现出良好的耐受性与治疗效果。本综述介绍了HDAC和HDACi的分类依据以及在临床上的应用,阐述了伏立诺他、贝利司他、帕比司他、戊丙酸、恩替诺特、西达本胺等6种HDACi在AML中的临床前研究结果和临床应用研究进展,讨论了HDACi与其他抗癌药物联用在AML中的作用机制,并对HDACi今后的发展提出了建议,期望为临床治疗AML提供参考。  相似文献   

15.
Single-cell network profiling (SCNP) data generated from multi-parametric flow cytometry analysis of bone marrow (BM) and peripheral blood (PB) samples collected from patients >55 years old with non-M3 AML were used to train and validate a diagnostic classifier (DXSCNP) for predicting response to standard induction chemotherapy (complete response [CR] or CR with incomplete hematologic recovery [CRi] versus resistant disease [RD]). SCNP-evaluable patients from four SWOG AML trials were randomized between Training (N = 74 patients with CR, CRi or RD; BM set = 43; PB set = 57) and Validation Analysis Sets (N = 71; BM set = 42, PB set = 53). Cell survival, differentiation, and apoptosis pathway signaling were used as potential inputs for DXSCNP. Five DXSCNP classifiers were developed on the SWOG Training set and tested for prediction accuracy in an independent BM verification sample set (N = 24) from ECOG AML trials to select the final classifier, which was a significant predictor of CR/CRi (area under the receiver operating characteristic curve AUROC = 0.76, p = 0.01). The selected classifier was then validated in the SWOG BM Validation Set (AUROC = 0.72, p = 0.02). Importantly, a classifier developed using only clinical and molecular inputs from the same sample set (DXCLINICAL2) lacked prediction accuracy: AUROC = 0.61 (p = 0.18) in the BM Verification Set and 0.53 (p = 0.38) in the BM Validation Set. Notably, the DXSCNP classifier was still significant in predicting response in the BM Validation Analysis Set after controlling for DXCLINICAL2 (p = 0.03), showing that DXSCNP provides information that is independent from that provided by currently used prognostic markers. Taken together, these data show that the proteomic classifier may provide prognostic information relevant to treatment planning beyond genetic mutations and traditional prognostic factors in elderly AML.  相似文献   

16.
Acute myeloid leukemia (AML) is the most common malignant myeloid disorder of progenitor cells in myeloid hematopoiesis and exemplifies a genetically heterogeneous disease. The patients with AML also show a heterogeneous response to therapy. Although all-trans retinoic acid (ATRA) has been successfully introduced to treat acute promyelocytic leukemia (APL), it is rather ineffective in non-APL AML. In our present study, 1200 off-patent marketed drugs and natural compounds that have been approved by the Food and Drug Administration (FDA) were screened for anti-leukemia activity using the retrovirus transduction/transformation assay (RTTA). Furazolidone (FZD) was shown to inhibit bone marrow transformation mediated by several leukemia fusion proteins, including AML1-ETO. Furazolidone has been used in the treatment of certain bacterial and protozoan infections in human and animals for more than sixty years. We investigated the anti-leukemic activity of FZD in a series of AML cells. FZD displayed potent antiproliferative properties at submicromolar concentrations and induced apoptosis in AML cell lines. Importantly, FZD treatment of certain AML cells induced myeloid cell differentiation by morphology and flow cytometry for CD11b expression. Furthermore, FZD treatment resulted in increased stability of tumor suppressor p53 protein in AML cells. Our in vitro results suggest furazolidone as a novel therapeutic strategy in AML patients.  相似文献   

17.
The optimal dose, scheme, and clinical setting for Ara-C in acute myeloid leukemia (AML) treatment remain uncertain. In this study, we performed a meta-analysis to systematically assess the impact of high-dose cytarabine (HDAC) on AML therapy during the induction and consolidation stages. Twenty-two trials with a total of 5,945 de novo AML patients were included in the meta-analysis. Only patients less than 60 year-old were included in the study. Using HDAC in induction therapy was beneficial for RFS (HR = 0.57; 95% CI, 0.35–0.93; P = 0.02) but not so for CR rate (HR = 1.01; 95% CI, 0.93–1.09; P = 0.88) and OS (HR = 0.83; 95% CI, 0.66–1.03; P = 0.1). In consolidation therapy, HDAC showed significant RFS benefits (HR = 0.67; 95% CI, 0.49–0.9; P = 0.008) especially for the favorable-risk group (HR = 0.38; 95% CI, 0.21–0.69; P = 0.001) compared with SDAC (standard dose cytarabine), although no OS advantage was observed (HR = 0.84; 95% CI, 0.55–1.27; P = 0.41). HDAC treatment seemed less effective than auto-BMT/allo-BMT treatment (HR = 1.66, 95% CI, 1.3–2.14; P<0.0001) with similar OS. HDAC treatment led to lower relapse rate in induction and consolidation therapy than SDAC treatment, especially for the favorable-risk group. Auto-BMT/allo-BMT was more beneficial in prolonging RFS than HDAC.  相似文献   

18.
For many years, immortalized tumor cell lines have been used as reliable tools to understand the function of oncogenes and tumor suppressor genes. Today, we know that tumors can comprise subclones with common and with subclone-specific genetic alterations. We sequenced DNA and RNA of sequential sister cell lines obtained from patients with pre-B acute lymphoblastic leukemia at different phases of the disease. All five pairs of cell lines carry alterations that are typical for this disease: loss of tumor suppressors (CDKN2A, CDKN2B), expression of fusion genes (ETV6-RUNX1, BCR-ABL1, MEF2D-BCL9) or of genes targeted by point mutations (KRAS A146T, NRAS G12C, PAX5 R38H). MEF2D-BCL9 and PAX R38H mutations in cell lines have hitherto been undescribed, suggesting that YCUB-4 (MEF2D-BCL9), PC-53 (PAX R38H) and their sister cell lines will be useful models to elucidate the function of these genes. All aberrations mentioned above occur in both sister cell lines, demonstrating that the sisters derive from a common ancestor. However, we also found mutations that are specific for one sister cell line only, pointing to individual subclones of the primary tumor as originating cells. Our data show that sequential sister cell lines can be used to study the clonal development of tumors and to elucidate the function of common and clone-specific mutations.  相似文献   

19.
20.
目的:研究急性髓系白血病免疫表型特征以及遗传学特征。方法:选取2011年1月到2014年5月我院收治的急性髓系白血病患者169例,采用流式细胞术和相关的单克隆抗体来分析所有患者的骨髓免疫表型,采用染G染色体显带技术分析患者的核型,根据淋系抗原(lym Ag)的表达将患者分为lym Ag+组和lym Ag-组。结果:抗原CD13、CD33、CD117以及MPO等髓系抗原最常在急性髓系白血病患者中表达,其中CD117在M3型病例中表达为85.7%(24/28),而CD34、HLA-DR双阴性、较强的自发荧光、CD13、CD33和MPO对M3型的诊断也具有一定的价值;其中47.9%(81/169)的患者伴随着淋系抗原表达,以CD7和CD56为主;60.4%(102/169)的患者伴随着核型异常;而伴随着t(8:21)的M2患者中的CD15、CD19和CD56的表达显著增强,而t(15:17)均发生于M3型患者中;而lym Ag+组患者CD34的阳性患者为77.8%(63/81)显著高于lym Ag-组的47.7%(42/88),两组比较差异具有统计学意义(P0.05)。结论:免疫表型对急性髓系白血病的诊断具有重要的意义,且免疫表型和异常核型存在密切的联系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号