首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the time courses of intracellular pH and the metabolism of phosphocreatine (PCr) and inorganic phosphate (P) at the onset of four exercise intensities and recoveries. Non-invasive evaluation of continuous changes in phosphorus metabolites has become possible using31P-nuclear magnetic resonance spectroscopy (31P-MRS). After measurements at rest, six healthy male subjects performed 4 min of femoral flexion exercise at intensities of 0 (loadless), 10, 20 and 30 kg · m · min–1 in a 2.1 T superconducting magnet with a 67-cm bore. Measurements were continuously made during 5 min of recovery. During a series of rest-exercise-recovery procedures,31P-MRS were accumulated using 32 scans · spectrum–1 requiring 12.8 s each. At the onset of exercise, PCr decreased exponentially with a time constant of 27–32 s regardless of the exercise intensity. The time constant PCr resynthesis during recovery was about 27–40 s. The PCr kinetics were independent of exercise intensity. There were similar Pi kinetics at the onset of all types of exercise, while those of Pi recovery became significantly longer at the higher exercise intensities (P < 0.05). Furthermore, the intracellular pH indicated temporary alkalosis just at the onset of exercise, probably due to absorption of hydrogen ions by PCr hydrolysis, and then decrease at a point about 40%–50% of the preexercise PCr. The pH recovery time was longer than that for the Pi or PCr kinetics. By using a more efficient resolution system it was possible to obtain the phosphorus kinetics during exercise and to follow PCr resynthesis within the first few minutes of recovery. From our results it was concluded that in general the time course of PCr and Pi metabolism were unaffected by the exercise intensity, both at the onset of exercise and during recovery, with the exception of Pi recovery.  相似文献   

2.
秦斌  齐静 《生物磁学》2011,(1):176-179
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

3.
Time-resolved 31-phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) of the biceps femoris muscles was performed during exercise and recovery in six healthy sedentary male subjects (maximal oxygen uptake; 46.6 +/- 1.7 (SEM) ml.kg-1.min-1), 5 male sprinters (56.2 +/- 2.5), and 5 male long-distance runners (73.6 +/- 2.2). Each performed 4 min of knee flexion exercises at absolute values of 1.63 W and 4.90 W, followed by 5 min of recovery in a prone position in a 2.1 T superconducting magnet with a 67 cm bore. 31P-MRS spectra were recorded every 12.8 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of phosphocreatine peaks (PCr) and inorganic phosphate (Pi) were performed. The work loads in the present study were selected as mild exercise (1.63 W) and heavy exercise (4.90 W), corresponding to 18-23% and 54-70% of maximal exercise intensity. Long-distance runners showed a significantly smaller decrement in PCr and less acidification at a given exercise intensity compared to those shown by sedentary subjects. The transient responses of PCr and Pi during recovery were characterized by first-order kinetics. After exercise, the recovery rates of PCr and Pi were significantly faster in long-distance runners than in sedentary subjects (P < 0.05). Since it is postulated that PCr resynthesis is controlled by aerobic metabolism and mitochondrial creatine kinase, it is suggested that the faster PCr and Pi recovery rates and decreased acidification seen in long-distance runners during and after exercise might be attributed to their greater capacity for aerobic metabolism.  相似文献   

4.
Friedreich ataxia (FRDA) is caused by a GAA repeat expansion in the FXN gene leading to reduced expression of the mitochondrial protein frataxin. Recombinant human erythropoietin (rhuEPO) is suggested to increase frataxin levels, alter mitochondrial function and improve clinical scores in FRDA patients. Aim of the present pilot study was to investigate mitochondrial metabolism of skeletal muscle tissue in FRDA patients and examine effects of rhuEPO administration by phosphorus 31 magnetic resonance spectroscopy (31P MRS). Seven genetically confirmed FRDA patients underwent 31P MRS of the calf muscles using a rest-exercise-recovery protocol before and after receiving 3000 IU of rhuEPO for eight weeks. FRDA patients showed more rapid phosphocreatine (PCr) depletion and increased accumulation of inorganic phosphate (Pi) during incremental exercise as compared to controls. After maximal exhaustive exercise prolonged regeneration of PCR and slowed decline in Pi can be seen in FRDA. PCr regeneration as hallmark of mitochondrial ATP production revealed correlation to activity of complex II/III of the respiratory chain and to demographic values. PCr and Pi kinetics were not influenced by rhuEPO administration. Our results confirm mitochondrial dysfunction and exercise intolerance due to impaired oxidative phosphorylation in skeletal muscle tissue of FRDA patients. MRS did not show improved mitochondrial bioenergetics after eight weeks of rhuEPO exposition in skeletal muscle tissue of FRDA patients.

Trial Registration

EU Clinical Trials Register 2008-000040-13  相似文献   

5.
ObjectiveTo study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome.MethodsWe performed a case control study in 3 MELAS siblings (m.3243A>G tRNAleu(UUR) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO2peak) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.ResultsAt baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 31P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg2+ (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO2peak. On 31P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque.SignificanceThese results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.

Classification of Evidence

Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.

Trial Registration

ClinicalTrials.gov NCT01603446.  相似文献   

6.
To investigate the splitting of the inorganic phosphate (Pi) peak during exercise and recovery, a time-resolved 31phosphorus nuclear magnetic resonance spectroscopy (31P-MRS) technique was used. Seven healthy young sedentary male subjects performed knee flexion exercise in the prone position inside a 2.1-T magnet, with the surface coil for 31P-MRS being placed on the biceps femoris muscle. After a 1-min warm-up without loading, the exercise intensity was increased by 0.41 W at 15-s intervals until exhaustion, followed by a 5-min recovery period. The 31P-MRS were recorded every 5 s during the rest-exercise-recovery sequence. Computer-aided contour analysis and pixel imaging of the Pi and phosphocreatine peaks were performed. Five of the seven subjects showed two distinct Pi peaks during exercise, suggesting two different pH distributions in exercising muscle (high pH and low pH region). In these five subjects, the high-pH increased rapidly just after the onset of exercise, while the low-pH peak increased gradually approximately 60 s after the onset of exercise. During recovery, the disappearance of the high-pH peak was more rapid than that of the low-pH peak. These findings suggest that our method 31P-MRS provides a simple approach for studying the kinetics of the Pi peak and intramuscular pH during exercise and recovery.  相似文献   

7.
Exercise-induced changes in phosphorus-containing metabolites and intracellular pH (pHi) have been studied in the finger flexor muscles of 3 patients with glycogen phosphorylase deficiency (McArdle's disease) in comparison to 14 healthy volunteers. At rest, no difference was observed for PCr/Pi ratio and pHi while patients exhibited a higher PCr/ATP ratio (5.91 +/- 0.98 vs 4.02 +/- 0.6). At end-of-exercise, PCr/Pi was abnormally low (0.51 +/- 0.19 vs 1.64 +/- 0.37) whereas no acidosis was observed. The slow recovery of PCr/Pi ratio indicates an impairment of oxidative capacity accompanying the defect in the glycogenolytic pathway. The failure to observe a transient Pi disappearance at the onset of recovery (an index of glycogen phosphorylase activity) can be used in conjunction with the lack of exercise acidosis as a diagnostic index of McArdle's disease.  相似文献   

8.
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.  相似文献   

9.
We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.  相似文献   

10.

Background and Aims

Physical exercise leads to substantial adaptive responses in skeletal muscles and plays a central role in a healthy life style. Since exercise induces major systemic responses, underlying cellular mechanisms are difficult to study in vivo. It was therefore desirable to develop an in vitro model that would resemble training in cultured human myotubes.

Methods

Electrical pulse stimulation (EPS) was applied to adherent human myotubes. Cellular contents of ATP, phosphocreatine (PCr) and lactate were determined. Glucose and oleic acid metabolism were studied using radio-labeled substrates, and gene expression was analyzed using real-time RT-PCR. Mitochondrial content and function were measured by live imaging and determination of citrate synthase activity, respectively. Protein expression was assessed by electrophoresis and immunoblotting.

Results

High-frequency, acute EPS increased deoxyglucose uptake and lactate production, while cell contents of both ATP and PCr decreased. Chronic, low-frequency EPS increased oxidative capacity of cultured myotubes by increasing glucose metabolism (uptake and oxidation) and complete fatty acid oxidation. mRNA expression level of pyruvate dehydrogenase complex 4 (PDK4) was significantly increased in EPS-treated cells, while mRNA expressions of interleukin 6 (IL-6), cytochrome C and carnitin palmitoyl transferase b (CPT1b) also tended to increase. Intensity of MitoTracker®Red FM was doubled after 48 h of chronic, low-frequency EPS. Protein expression of a slow fiber type marker (MHCI) was increased in EPS-treated cells.

Conclusions

Our results imply that in vitro EPS (acute, high-frequent as well as chronic, low-frequent) of human myotubes may be used to study effects of exercise.  相似文献   

11.
We measured ATP, phosphocreatine (PCr), inorganic phosphate (Pi), and the intracellular pH in rat hindlimb muscles during submaximal isometric exercise with various O2 deliveries using31P nuclear magnetic resonance spectroscopy (31P NMR) to evaluate changes in energy metabolism in relation to O2 availability. Delivery of O2 to muscles was altered by controlling the fractional concentration of inspired oxygen (F IO2) at 0.50, 0.28, 0.21, 0.11 and 0.08 with monitoring partial pressure of oxygen and carbon dioxide, and bicarbonate at the femoral artery. The steady-state ratio of PCr : (PCr + Pi) during exercise decreased as a function ofF IO2 even at 0.21. Significant acidification of the intracellular pH during exercise occurred at 0.08F IO2. Change in the PCr : (PCr + Pi) ratio demonstrated that the oxidative capacity, i.e. the maximal rate of the oxidative phosphorylation reaction, in muscle was not limited by O2 delivery at 0.50F IO2, but was significantly limited at 0.21F IO2 or below. Change in the intracellular pH at 0.08F IO2 could be interpreted as an increase in lactate, suggesting activation of glycolysis. Correlation between the PCr : (PCr + Pi) ratio and the intracellular pH revealed the existence of a critical PCr : (PCr + Pi) ratio and pH for glycolysis activation at around 0.4 and 6.7, respectively.  相似文献   

12.
磁共振波谱分析(magnetic resonance spectroscopy MRS)是目前唯一无创性定量研究人体组织细胞代谢、生理生化改变的方法。磁共振磷谱(31P-MRS)可对无机磷(Pi)、磷酸肌酸(PCr)、三磷酸腺苷(ATP)等含磷高能化合物进行定量分析,是在体研究骨骼肌能量代谢的有力工具。动态磷谱技术可测量肌肉在静息状态、收缩过程和恢复过程中细胞内高能磷酸化合物的变化,评价骨骼肌做功时的能量的转换效率,实现对线粒体功能的无创性评价。本文将对肌肉磷谱的研究进展做综述,尤其侧重于动态磷谱的应用,为以后利用磷谱客观研究肌肉相关疾病奠定良好的基础。  相似文献   

13.

Background

SRT2104 has been developed as a selective small molecule activator of SIRT1, a NAD+-dependent deacetylase involved in the regulation of energy homeostasis and the modulation of various metabolic pathways, including glucose metabolism, oxidative stress and lipid metabolism. SIRT1 has been suggested as putative therapeutic target in multiple age-related diseases including type 2 diabetes and dyslipidemias. We report the first clinical trial of SRT2104 in elderly volunteers.

Methods

Oral doses of 0.5 or 2.0 g SRT2104 or matching placebo were administered once daily for 28 days. Pharmacokinetic samples were collected through 24 hours post-dose on days 1 and 28. Multiple pharmacodynamic endpoints were explored with oral glucose tolerance tests (OGTT), serum lipid profiles, magnetic resonance imaging (MRI) for assessment of whole body visceral and subcutaneous fat, maximal aerobic capacity test and muscle 31P magnetic resonance spectroscopy (MRS) for estimation of mitochondrial oxidative capacity.

Results

SRT2104 was generally safe and well tolerated. Pharmacokinetic exposure increased less than dose-proportionally. Mean Tmax was 2–4 hours with elimination half-life of 15–20 hours. Serum cholesterol, LDL levels and triglycerides decreased with treatment. No significant changes in OGTT responses were observed. 31P MRS showed trends for more rapid calculated adenosine diphosphate (ADP) and phosphocreatine (PCr) recoveries after exercise, consistent with increased mitochondrial oxidative phosphorylation.

Conclusions

SRT2104 can be safely administered in elderly individuals and has biological effects in humans that are consistent with SIRT1 activation. The results of this study support further development of SRT2104 and may be useful in dose selection for future clinical trials in patients.

Trial Registration

ClinicalTrials.gov NCT00964340  相似文献   

14.
The present study objective involved evaluation of possibilities of magnetic resonance spectroscopy with phosphorus (31P-MRS) in diagnosis of metabolic disorders of skeletal muscles in patients with intermittent claudication, chronic heart failure and varicose disease of the lower extremities. In 20 patients with intermittent claudication, 10 patients with chronic heart failure, 10 patients with varicose disease and 10 volunteers, 31P-MRS was performed with 1.5 T MR system (Magnetom SP 63, Siemens). The following parameters were computed: phosphorus-creatinine index, intracellular pH in calf muscle, and time of half-recovery of the phosphorus-creatinine index. At rest, the phosphorus-creatinine indexes were similar in all groups; pH values at rest did not vary either. During isotonic exercise the phosphorus-creatinine index in the control group remained uncharged. In patients with intermittent claudication, the phosphorus-creatinine index at peak of exercise was decreased by 26.1% (p < 0.001), in patients with varicose disease--by 25.6% (p < 0.001), in patients with chronic heart failure by 8% (p < 0.001). PCr recovery half-time was increased in all patients. The patient group with intermittent claudication showed a reverse correlation between the pressure index and the degree of phosphorus-creatinine index decrease. CONCLUSION: 31P-MRS makes it possible to carry out non-invasive diagnosis of energy metabolic disorders of skeletal muscles in patients with impaired peripheral hemodynamics.  相似文献   

15.
To study the in vivo recruitment of different fiber types and their metabolic properties, 31P-nuclear magnetic resonance spectroscopy (31P-NMRS) of the human calf muscle was performed in seven normal sedentary subjects. In the exhaustive exercise protocol used, the work load was increased every minute during 5 min. This resulted in a prominent split of the Pi resonance in all subjects, indicating pH compartmentation in the muscles studied. From the chemical shift of the Pi peaks relative to phosphocreatine (PCr) at the end of the exercise, intracellular pH (pHi) averaged 6.92 +/- 0.05 (SD) in compartment 1 and 6.23 +/- 0.15 in compartment 2. The recovery of both Pi resonances after exercise could be followed easily in five of these subjects. The recovery rate of the Pi peak is a good estimate of the oxidative metabolism at the end of the exercise. A monoexponential regression analysis showed that the mean initial recovery rate S0 was 2.49 +/- 0.17%/s in compartment 1 and only 0.87 +/- 0.12%/s in compartment 2, indicating aerobic function three times higher in compartment 1 at the end of exercise. The mean relative ATP fraction dropped significantly (P less than 0.001), from 20.0 +/- 1.0% of the total 31P signal integral before exercise to 14.0 +/- 1.6% at the end of exercise. The simultaneous visualization of two compartments, in good order, one with high pHi and fast recovery and another with low pHi and slow recovery, is rationalized by the different metabolic behavior of type I and II fibers in human calf muscle in response to exhaustive exercise. This study demonstrates that 31P-NMRS is an excellent noninvasive procedure to quantify aerobic metabolism in both fiber types simultaneously.  相似文献   

16.
Size-dependent changes in therapeutically relevant and interrelated metabolic parameters of a murine fibrosarcoma (FSaII) were investigated in vivo using conscious (unanesthetized) animals and tumor sizes less than or equal to 2% of body weight. Tumor pH and bioenergetics were evaluated by 31P nuclear magnetic resonance spectroscopy (31P-MRS), and tumor tissue oxygen tension (pO2) distribution was examined using O2-sensitive needle electrodes. During growth FSaII tumors showed a progressive loss of phosphocreatine (PCr) and nucleoside triphosphate (NTP) with increasing inorganic phosphate (Pi) and phosphomonoester (PME) signals. Ratios for PCr/Pi, PME/Pi, NTP/Pi, and phosphodiester/inorganic phosphate (PDE/Pi) as well as pH determined by 31P-NMR (pHNMR) and the mean tissue pO2 progressively declined as the tumors increased in size. The only relevant ratio increasing with tumor growth was PME/NTP. When the mean tissue pO2 value was plotted against pHNMR, NTP/Pi, PCr/Pi, PME/Pi, and PDE/Pi for tumor groups of similar mean volumes, a highly significant positive correlation was observed. There was a negative correlation between mean tumor tissue pO2 values and PME/NTP. From these results we concluded that 31P-MRS can detect changes in tumor bioenergetics brought about by changes in tumor oxygenation. Furthermore, the close correlation between oxygenation and energy status suggests that the microcirculation in FSaII tumors yields an O2-limited energy metabolism. Finally, a correlation between the proportion of pO2 readings between 0 and 2.5 mmHg and the radiobiologically hypoxic cell fraction in FSaII tumors was observed. The latter finding might be of particular importance for radiation therapy.  相似文献   

17.
The effects of ovariectomy on metabolism of high-energy phosphate compounds during and after exercise were studied in hindleg muscles of 14 rats. Sciatic nerve stimulation was used to establish different work loads, and the changes in inorganic phosphate-to-phosphocreatine ratios (Pi/PCr) were recorded by 31P nuclear magnetic resonance (NMR) in vivo. Four weeks after ovariectomy, there was evidence of significantly higher Pi/PCr during work at stimulation rates greater than 0.5 Hz. The slope for the stimulation rate-to-Pi/PCr relationship decreased from 1.98 +/- 0.15 to 1.36 +/- 0.2 Hz/Pi/PCr after ovariectomy. The normalized tension output of these muscles, tested separately using identical stimulation protocols, was not changed with ovariectomy. Thus the relationship between work (tension-time integral) and bioenergetic cost (Pi/PCr) suggested reduced maximal enzyme activity (Vmax) by 9-17% as a result of lack of ovarian sex hormones, but no change in Michaelis-Menten constant (Km) was found. Postexercise recovery was also significantly slower (3.27 +/- 0.54 PCr/Pi units per minute compared with 4.04 +/- 1.08 in controls). It is suggested that reduced levels of ovarian sex hormones decrease oxidative phosphorylation. Cytochrome oxidase activity was reduced in these muscles by 40%, but other mitochondrial enzyme systems may be affected as well. The possible significance of these data is the implication of a reduced capacity for menopausal women or amenorrheic female athletes to perform prolonged intensive exercise.  相似文献   

18.
In skeletal muscle, phosphocreatine (PCr) recovery from submaximal exercise has become a reliable and accepted measure of muscle oxidative capacity. During exercise, O2 availability plays a role in determining maximal oxidative metabolism, but the relationship between O2 availability and oxidative metabolism measured by 31P-magnetic resonance spectroscopy (MRS) during recovery from exercise has never been studied. We used 31P-MRS to study exercising human gastrocnemius muscle under conditions of varied fractions of inspired O2 (FIO2) to test the hypothesis that varied O2 availability modulates PCr recovery from submaximal exercise. Six male subjects performed three bouts of 5-min steady-state submaximal plantar flexion exercise followed by 5 min of recovery in a 1.5-T magnet while breathing three different FIO2 concentrations (0.10, 0. 21, and 1.00). Under each FIO2 treatment, the PCr recovery time constants were significantly different, being longer in hypoxia [33. 5 +/- 4.1 s (SE)] and shorter in hyperoxia (20.0 +/- 1.8 s) than in normoxia (25.0 +/- 2.7 s) (P 相似文献   

19.

AIM

Muscular fatigue is a complex phenomenon affected by muscle fiber type and several metabolic and ionic changes within myocytes. Mitochondria are the main determinants of muscle oxidative capacity which is also one determinant of muscle fatigability. By measuring the concentrations of intracellular stores of high-energy phosphates it is possible to estimate the energy production efficiency and metabolic recovery of the muscle. Low intrinsic aerobic capacity is known to be associated with reduced mitochondrial function. Whether low intrinsic aerobic capacity also results in slower metabolic recovery of skeletal muscle is not known. Here we studied the influence of intrinsic aerobic capacity on in vivo muscle metabolism during maximal, fatiguing electrical stimulation.

METHODS

Animal subjects were genetically heterogeneous rats selectively bred to differ for non–trained treadmill running endurance, low capacity runners (LCRs) and high capacity runners (HCRs) (n = 15–19). We measured the concentrations of major phosphorus compounds and force parameters in a contracting triceps surae muscle complex using 31P-Magnetic resonance spectroscopy (31P-MRS) combined with muscle force measurement from repeated isometric twitches.

RESULTS

Our results demonstrated that phosphocreatine re-synthesis after maximal muscle stimulation was significantly slower in LCRs (p<0.05). LCR rats also became promptly fatigued and maintained the intramuscular pH poorly compared to HCRs. Half relaxation time (HRT) of the triceps surae was significantly longer in LCRs throughout the stimulation protocol (p≤0.05) and maximal rate of torque development (MRTD) was significantly lower in LCRs compared to HCRs from 2 min 30 s onwards (p≤0.05).

CONCLUSION

We observed that LCRs are more sensitive to fatigue and have slower metabolic recovery compared to HCRs after maximal muscle contractions. These new findings are associated with reduced running capacity and with previously found lower mitochondrial content, increased body mass and higher complex disease risk of LCRs.  相似文献   

20.
At the onset of a square-wave exercise of moderate intensity, in the absence of any detectable lactate production, the hydrolysis of phosphocreatine (PCr) fills the gap between energy requirement and energy yield by oxidative pathways, thus representing a readily available source of energy for the muscle. We verified experimentally the relationships between high-energy phosphates and/or their changes and the time constant of PCr concentration ([PCr]) kinetics in humans (tau(PCr)). High-energy phosphate concentration (by (31)P-NMR spectroscopy) in the calf muscles were measured during three repetitions of the rest-to-work transition of moderate aerobic square-wave exercise on nine healthy volunteers, while resting [PCr] was estimated from the appropriate spectroscopy data. PCr concentration decreased significantly (22 +/- 6%) from rest to steady-state exercise, without differences among the three repetitions. Absolute resting [PCr] and tau(PCr) were consistent with literature values, amounting to 27.5 +/- 2.2 mM and 23.9 +/- 2.9 s, respectively. No significant relationships were detected between individual tau(PCr) and mechanical power, fraction or absolute amount of PCr hydrolyzed, or change in ADP concentration. On the contrary, individual tau(PCr) (s) was linearly related to absolute resting [PCr] (mM), the relationship being described by: tau(PCr) = 0.656 + 0.841.[PCr] (n = 9, R = 0.708, P < 0.05). These data support the view that in humans PCr concentration sets the time course of the oxidative metabolism in skeletal muscle at the start of exercise, being one of the main controllers of oxidative phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号