共查询到20条相似文献,搜索用时 15 毫秒
1.
Kiss John Z.; Guisinger Mary M.; Miller Allison J.; Stackhouse Kathi S. 《Plant & cell physiology》1997,38(5):518-525
Gravitropism was examined in dark- and light-grown hypocotylsof wild-type (WT), two reduced starch mutants (ACG 20 and ACG27), and a starchless mutant (ACG 21) of Arabidopsis. In addition,the starch content of these four strains was studied with lightand electron microscopy. Based on time course of curvature andorientation studies, the graviresponse in hypocotyls is proportionalto the amount of starch in a genotype. Furthermore, starch mutationsseem to primarily affect gravitropism rather than differentialgrowth since both phototropic curvature and growth rates amongthe four genotypes are approximately equal. Our results suggestthat gravity perception may require a greater plastid mass inhypocotyls compared to roots. The kinetics of gravitropic curvaturealso was compared following reorientation at 45°, 90°,and 135°. As has been reported for other plant species,the optimal angle of reorientation is 135° for WT Arabidopsisand the two reduced starch mutants, but the magnitude of curvatureof the starchless mutant appears to be independent of the initialangle of displacement. Taken together, the results of the presentstudy and our previous experiments with roots of the same fourgenotypes [Kiss et al. (1996) Physiol. Plant. 97: 237] supporta plastid-based hypothesis for gravity perception in plants. (Received December 16, 1996; Accepted February 7, 1997) 相似文献
2.
Jean Mary Virginie Redeker Jean-Pierre Le Caer Jean Rossier Jean-Marie Schmitter 《Journal of Protein Chemistry》1997,16(5):403-407
Axonemal tubulin exhibits a high degree of heterogeneity mostly due to several posttranslational modifications (PTM). The aim of this work was to chemically characterize the different PTM occurring in the C-terminal tail of axonemal tubulin purified from sea urchin, Paracentrotus lividus, spermatozoa. After its purification, tubulin was enzymatically cleaved. The C-terminal peptides were chromatographically isolated, first by anion exchange and then by reverse-phase HPLC. Peptides were characterized by their sequence, determined by Edman degradation, and by their mass, determined by MALDI-TOF/MS. The two major conclusions are that the majority of the isolated C-terminal peptides were unmodified and that polyglycylation and polyglutamylation can occur simultaneously on one molecule of -tubulin. 相似文献
3.
The cytoskeletal protein tubulin plays an integral role in the functional specialization of many cell types. In the central nervous system, post-translational modifications and the expression of specific tubulin isotypes in neurons have been analyzed in greater detail than in their astrocytic counterparts. In this study, we characterized post-translational specifications of tubulin in human astrocytes using the normal human astrocyte (NHA; Lonza) commercial cell line of fetal origin. Immunocytochemical techniques were implemented in conjunction with confocal microscopy to image class III β-tubulin (βIII-tubulin), acetylated tubulin, and polyglutamylated tubulin using fluorescent antibody probes. Fluorescent probe intensity differences and colocalization were quantitatively assessed with the ‘EBImage’ package for the statistical programming language R. Colocalization analysis revealed that, although both acetylated tubulin and polyglutamylated tubulin showed a high degree of correlation with βIII-tubulin, the correlation with acetylated tubulin was stronger. Quantification and statistical analysis of fluorescence intensity demonstrated that the fluorescence probe intensity ratio for acetylated tubulin/βIII-tubulin was greater than the ratio for polyglutamylated tubulin/βIII-tubulin. The open source GEODATA set GSE819950, comprising RNA sequencing data for the NHA cell line, was mined for the expression of enzymes responsible for tubulin modifications. Our analysis uncovered greater expression at the mRNA level for enzymes reported to function in acetylation and deacetylation as compared to enzymes implicated in glutamylation and deglutamylation. Taken together, the results represent a step toward unraveling the tubulin isotypic expression profile and post-translational modification patterns in astrocytes during human brain development. 相似文献
4.
5.
6.
Arabidopsis , aux1-7, axr1-3 and axr2-1, grown in a natural sandy soil, without sucrose supplementation. The three mutants showed impaired epidermal cell elongation in the hypocotyls of 15-day-old seedlings, with axr2-1 showing the most marked effects. In addition, the roots of axr2-1 elongated faster and presented a more extended meristematic zone than the other genotypes. Unchanged epidermal cell length in the differentiation zone of axr2-1 relative to the wild-type suggested enhancement of cell proliferation. These alterations may have affected the timing and site of emergence of the root hairs, starting later and further from the root tip than in the other genotypes. Similarly to the wild-type, no root hair growth was initiated in axr2-1 drought-induced short roots, although the epidermis was differentiated into trichoblasts and atrichoblasts. On rehydration of the short roots, hair formation occurred from trichoblasts prior to epidermal cell elongation. Therefore, auxin-insensitivity in the axr2-1 mutant did not result in alterations of the hair-forming process itself. The differential development of axr2-1 seedlings, relative to the other auxin-insensitive mutants, suggested that the AXR2 gene has a complex, regulatory function in multiple hormone signaling. Received 26 July 2000/ Accepted in revised form 28 February 2001 相似文献
7.
Modifications of Mitochondrial DNA Cause Changes in Floral Development in Homeotic-like Mutants of Tobacco 总被引:11,自引:3,他引:11
下载免费PDF全文

To investigate the influence of mitochondrial genes on stamen development of higher plants, protoplasts from three different, male-sterile tobacco cultivars were fused. The fused cells were cultured individually into calli, from which plants were regenerated. Cybrid plants were obtained that exhibited flowers with recombined biparental male-sterile morphology and with novel male-sterile stamens that differed from any types from sexual or somatic hybridizations described previously. The male-sterile morphologies of these cybrids and their parents support the hypothesis that nuclear-mitochondrial interaction occurs at several stages in tobacco floral development and that several mitochondrial genes are necessary for normal stamen and corolla development. Analysis by restriction endonuclease digestion of mitochondrial DNA of male-sterile cybrids and their parents revealed that the mitochondrial DNA of male-sterile cybrids with parental floral morphology was unchanged when compared with parental mitochondrial DNA. Cybrids that were morphologically similar to one parent's male-sterile phenotype had mitochondrial DNA almost identical to that parent, whereas cybrids with recombined biparental or novel male-sterile phenotypes contained mitochondrial DNA different from both male-sterile parents and from each other. A set of mitochondrial DNA fragments could be correlated with split corollas, a feature found in several tobacco male-sterile cultivars. DNA gel blot analysis using a number of mitochondrial genes confirmed the conclusions based on ethidium bromide staining of mitochondrial DNA restriction digests. 相似文献
8.
Gy?rgy P. Rédei 《Genetics》1962,47(4):443-460
9.
A simple screening method was developed for the isolation of Arabidopsis thaliana mutants hypersensitive to X-ray irradiation. The root meristem was used as the target for irradiation with sublethal doses of X rays, while protection of the shoot meristem by a lead cover allowed the rescue of hypersensitive individuals. We isolated nine independent X-ray-hypersensitive mutants from 7000 M2 seedlings. Analysis of three chosen mutants (xrs4, xrs9 and xrs11) showed that alterations in single recessive alleles are responsible for their phenotypes. The mutations are not allelic but linked and map to chromosome 4, suggesting mutations in novel genes as compared to previously mapped mutant alleles. Importantly, hypersensitivity to X rays was found to correlate with hypersensitivity to the DNA-alkylating agent mitomycin C, which provokes interstrand crosslinks, and/or to methyl methanesulfonate, which is known as a radiomimetic chemical. These novel phenotypes suggest that the mutants described here are altered in the repair of DNA damage, most probably by recombinational repair. 相似文献
10.
To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress. 相似文献
11.
Increases in the terrestrial levels of ultraviolet-B (UV-B) radiation (280 to 320 nm) due to diminished stratospheric ozone have prompted an investigation of the protective mechanisms that contribute to UV-B tolerance in plants. In response to UV-B stress, flowering plants produce a variety of UV-absorptive secondary products derived from phenylalanine. Arabidopsis mutants with defects in the synthesis of these compounds were tested for UV-B sensitivity. The transparent testa-4 (tt4) mutant, which has reduced flavonoids and normal levels of sinapate esters, is more sensitive to UV-B than the wild type when grown under high UV-B irradiance. The tt5 and tt6 mutants, which have reduced levels of UV-absorptive leaf flavonoids and the monocyclic sinapic acid ester phenolic compounds, are highly sensitive to the damaging effects of UV-B radiation. These results demonstrate that both flavonoids and other phenolic compounds play important roles in vivo in plant UV-B protection. 相似文献
12.
13.
Very little is known about the molecular events triggering differentiated cells to re-enter the cell cycle. We have investigated the possible role of tyrosine phosphorylation in this process with hypocotyl explants of Arabidopsis thaliana. Phytohormone-stimulated cell cycle reactivation in hypocotyls was accompanied by tyrosine phosphorylation of several proteins. Such regulation of the tyrosine phosphorylation in these proteins was not observed in a callus-formation-deficient mutant, srd2, a result which suggests that the induction of tyrosine phosphorylation occurs as a specific event in callus cell proliferation. The promoter activity of cyclin-dependent kinase, CDKA;1, was also examined in phytohormone-stimulated hypocotyls. This study highlighted that protein tyrosine phosphorylation may play an important regulatory role in phytohormone-stimulated cell proliferation. 相似文献
14.
Jennetta W. Hammond Chun-Fang Huang Stefanie Kaech Catherine Jacobson Gary Banker Kristen J. Verhey 《Molecular biology of the cell》2010,21(4):572-583
Polarized transport by microtubule-based motors is critical for neuronal development and function. Selective translocation of the Kinesin-1 motor domain is the earliest known marker of axonal identity, occurring before morphological differentiation. Thus, Kinesin-1–mediated transport may contribute to axonal specification. We tested whether posttranslational modifications of tubulin influence the ability of Kinesin-1 motors to distinguish microtubule tracks during neuronal development. We detected no difference in microtubule stability between axons and minor neurites in polarized stage 3 hippocampal neurons. In contrast, microtubule modifications were enriched in a subset of neurites in unpolarized stage 2 cells and the developing axon in polarized stage 3 cells. This enrichment correlated with the selective accumulation of constitutively active Kinesin-1 motors. Increasing tubulin acetylation, without altering the levels of other tubulin modifications, did not alter the selectivity of Kinesin-1 accumulation in polarized cells. However, globally enhancing tubulin acetylation, detyrosination, and polyglutamylation by Taxol treatment or inhibition of glycogen synthase kinase 3β decreased the selectivity of Kinesin-1 translocation and led to the formation of multiple axons. Although microtubule acetylation enhances the motility of Kinesin-1, the preferential translocation of Kinesin-1 on axonal microtubules in polarized neuronal cells is not determined by acetylation alone but is probably specified by a combination of tubulin modifications. 相似文献
15.
Five Arabidopsis mutants have been isolated on the basis of hypersensitivity of leaf tissue to UV light. For each mutant, the UV-hypersensitive phenotype (uvh) was inherited as a single recessive Mendelian trait. In addition, each uvh mutant represented a separate complementation group. Three of the mutations producing the UV hypersensitive phenotype have been mapped relative to either genetic markers or physical microsatellite polymorphisms. Locus UVH1 is linked to nga76 on chromosome 5, UVH3 to GL1 on chromosome three, and UVH6 to nga59 on chromosome 1. Each uvh mutant has a characteristic pattern of sensitivity based on UV sensitivity of leaf tissue, UV sensitivity of root tissue, and ionizing radiation sensitivity of seeds. On the basis of these patterns, possible molecular defects in these mutants are discussed. 相似文献
16.
Satoshi Fujita Jaromir Pytela Takashi Hotta Takehide Kato Takahiro Hamada Rie Akamatsu Yasumasa Ishida Natsumaro Kutsuna Seiichiro Hasezawa Yuko Nomura Hirofumi Nakagami Takashi Hashimoto 《Current biology : CB》2013,23(20):1969-1978
- Download : Download high-res image (195KB)
- Download : Download full-size image
17.
18.
Lacey Samuels Allan DeBono Patricia Lam Miao Wen Reinhard Jetter Ljerka Kunst 《Journal of visualized experiments : JoVE》2008,(16)
The plant cuticle is a waxy outer covering on plants that has a primary role in water conservation, but is also an important barrier against the entry of pathogenic microorganisms. The cuticle is made up of a tough crosslinked polymer called "cutin" and a protective wax layer that seals the plant surface. The waxy layer of the cuticle is obvious on many plants, appearing as a shiny film on the ivy leaf or as a dusty outer covering on the surface of a grape or a cabbage leaf thanks to light scattering crystals present in the wax. Because the cuticle is an essential adaptation of plants to a terrestrial environment, understanding the genes involved in plant cuticle formation has applications in both agriculture and forestry. Today, we''ll show the analysis of plant cuticle mutants identified by forward and reverse genetics approaches.
Download video file.(163M, mov) 相似文献
19.
Hieu Sy Vu Rebecca Roston Sunitha Shiva Manhoi Hur Eve Syrkin Wurtele Xuemin Wang Jyoti Shah Ruth Welti 《Plant signaling & behavior》2015,10(9)
Mechanical wounding of Arabidopsis thaliana leaves results in modifications of most membrane lipids within 6 hours. Here, we discuss the lipid changes, their underlying biochemistry, and possible relationships among activated pathways. New evidence is presented supporting the role of the processive galactosylating enzyme SENSITIVE TO FREEZING2 in the wounding response. 相似文献
20.
Rasmussen Amanda Hu Yuming Depaepe Thomas Vandenbussche Filip Boyer Francois-Didier Van Der Straeten Dominique Geelen Danny 《Journal of Plant Growth Regulation》2018,37(1):345-345
Journal of Plant Growth Regulation - 相似文献