首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

More than 100,000 chemicals are in use but have not been tested for their safety. To overcome limitations in the cancer bioassay several alternative testing strategies are explored. The inability to monitor non-invasively onset and progression of disease limits, however, the value of current testing strategies. Here, we report the application of in vivo imaging to a c-Myc transgenic mouse model of liver cancer for the development of a short-term cancer bioassay.

Methodology/Principal Findings

μCT and 18F-FDG μPET were used to detect and quantify tumor lesions after treatment with the genotoxic carcinogen NDEA, the tumor promoting agent BHT or the hepatotoxin paracetamol. Tumor growth was investigated between the ages of 4 to 8.5 months and contrast-enhanced μCT imaging detected liver lesions as well as metastatic spread with high sensitivity and accuracy as confirmed by histopathology. Significant differences in the onset of tumor growth, tumor load and glucose metabolism were observed when the NDEA treatment group was compared with any of the other treatment groups. NDEA treatment of c-Myc transgenic mice significantly accelerated tumor growth and caused metastatic spread of HCC in to lung but this treatment also induced primary lung cancer growth. In contrast, BHT and paracetamol did not promote hepatocarcinogenesis.

Conclusions/Significance

The present study evidences the accuracy of in vivo imaging in defining tumor growth, tumor load, lesion number and metastatic spread. Consequently, the application of in vivo imaging techniques to transgenic animal models may possibly enable short-term cancer bioassays to significantly improve hazard identification and follow-up examinations of different organs by non-invasive methods.  相似文献   

2.

Background

The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Eμ-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents.

Methodology/Principal Findings

Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Eμ-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor.

Conclusion/Significance

Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations.  相似文献   

3.

Background

Fungi contaminate the food of humans and animals, are a risk to health, and can cause financial losses. In this work, the antifungal activities of 16 mesoionic compounds (MI 1–16) were evaluated against mycotoxigenic fungi, including Aspergillus spp., Fusarium verticillioides and Penicillium citrinum. Furthermore, the decreased ergosterol in the total lipid content of Fusarium verticillioides was investigated.

Results

F. verticillioides was the most sensitive fungus to the mesoionic compounds. Among the evaluated compounds, MI-11 and MI-16 presented higher antifungal effects against F. verticillioides, with MIC values of 7.8 μg/ml, and MI-2 and MI-3 followed, with MICs of 15.6 μg/ml. The most active compounds were those with heterocyclic ring phenyl groups substituted by electron donor moieties (MI-11 and MI-16). Among some compounds with higher activity (MI-2, MI-11 and MI-16), decreased ergosterol content in the total lipid fraction of F. verticillioides was demonstrated. MI-2 reduced the ergosterol content approximately 40% and 80% at concentrations of 7.8 μg/ml and 15.6 μg/ml, respectively, and MI-11 and MI-16 decreased the content by 30% and 50%, respectively, when at a concentration of 7.8 μg/ml.

Conclusion

These findings indicate that mesoionic compounds have significant antifungal activity against F. verticillioides.  相似文献   

4.

Background

Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants.

Results

Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 μg/g tissue of Cry1Ac and 0.568 μg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein.

Conclusion

Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.  相似文献   

5.
6.

Background

Incorporation of exogenous glucanase into animal feed is common practice to remove glucan, one of the anti-nutritional factors, for efficient nutrition absorption. The acidic endo-β-1,3-1,4-glucanase (Bgl7A) from Bispora sp. MEY-1 has excellent properties and represents a potential enzyme supplement to animal feed.

Methodology/Principal Findings

Here we successfully developed a transgenic maize producing a high level of Bgl7AM (codon modified Bgl7A) by constructing a recombinant vector driven by the embryo-specific promoter ZM-leg1A. Southern and Western blot analysis indicated the stable integration and specific expression of the transgene in maize seeds over four generations. The β-glucanase activity of the transgenic maize seeds reached up to 779,800 U/kg, about 236-fold higher than that of non-transgenic maize. The β-glucanase derived from the transgenic maize seeds had an optimal pH of 4.0 and was stable at pH 1.0–8.0, which is in agreement with the normal environment of digestive tract.

Conclusion/Significance

Our study offers a transgenic maize line that could be directly used in animal feed without any glucanase production, purification and supplementation, consequently simplifying the feed enzyme processing procedure.  相似文献   

7.
8.

Background

Epstein-Barr virus is recognized to cause lymphoproliferative disorders and is also associated with cancer. Evidence suggests that monocytes are likely to be involved in EBV pathogenesis, especially due to a number of cellular functions altered in EBV-infected monocytes, a process that may affect efficient host defense. Because type I interferons (IFNs) are crucial mediators of host defense against viruses, we investigated the effect of EBV infection on the IFNα pathway in primary human monocytes.

Methodology/Principal Findings

Infection of monocytes with EBV induced IFNα secretion but inhibited the positive feedback loop for the amplification of IFNα. We showed that EBV infection induced the expression of suppressor of cytokine signaling 3 (SOCS3) and, to a lesser extent, SOCS1, two proteins known to interfere with the amplification of IFNα secretion mediated by the JAK/STAT signal transduction pathway. EBV infection correlated with a blockage in the activation of JAK/STAT pathway members and affected the level of phosphorylated IFN regulatory factor 7 (IRF7). Depletion of SOCS3, but not SOCS1, by small interfering RNA (siRNA) abrogated the inhibitory effect of EBV on JAK/STAT pathway activation and significantly restored IFNα secretion. Finally, transfection of monocytes with the viral protein Zta caused the upregulation of SOCS3, an event that could not be recapitulated with mutated Zta.

Conclusions/Significance

We propose that EBV protein Zta activates SOCS3 protein as an immune escape mechanism that both suppresses optimal IFNα secretion by human monocytes and favors a state of type I IFN irresponsiveness in these cells. This immunomodulatory effect is important to better understand the aspects of the immune response to EBV.  相似文献   

9.

Introduction

It remains challenging to predict the outcomes of therapy in patients with rheumatoid arthritis (RA). The objective of this study was to identify immune response signatures that correlate with clinical treatment outcomes in patients with RA.

Methods

A cohort of 71 consecutive patients with early RA starting treatment with disease-modifying antirheumatic drugs (DMARDs) was recruited. Disease activity at baseline and after 21 to 24 weeks of follow-up was measured using the Disease Activity Score in 28 joints (DAS28). Immune response profiling was performed by analyzing multi-cytokine production from peripheral blood cells following incubation with a panel of stimuli, including a mixture of human cytomegalovirus (CMV) and Epstein-Barr virus (EBV) lysates. Profiles identified via principal components analysis (PCA) for each stimulus were then correlated with the ΔDAS28 from baseline to follow-up. A clinically meaningful improvement in the DAS28 was defined as a decrease of ≥1.2.

Results

A profile of T-cell cytokines (IL-13, IL-4, IL-5, IL-2, IL-12, and IFN-γ) produced in response to CMV/EBV was found to correlate with the ΔDAS28 from baseline to follow-up. At baseline, a higher magnitude of the CMV/EBV immune response profile predicted inadequate DAS28 improvement (mean PCA-1 scores: 65.6 versus 50.2; P = 0.029). The baseline CMV/EBV response was particularly driven by IFN-γ (P = 0.039) and IL-4 (P = 0.027). Among patients who attained clinically meaningful DAS28 improvement, the CMV/EBV PCA-1 score increased from baseline to follow-up (mean +11.6, SD 25.5), whereas among patients who responded inadequately to DMARD therapy, the CMV/EBV PCA-1 score decreased (mean -12.8, SD 25.4; P = 0.002). Irrespective of the ΔDAS28, methotrexate use was associated with up-regulation of the CMV/EBV response. The CMV/EBV profile was associated with positive CMV IgG (P <0.001), but not EBV IgG (P = 0.32), suggesting this response was related to CMV exposure.

Conclusions

A profile of T-cell immunity associated with CMV exposure influences the clinical response to DMARD therapy in patients with early RA. Because CMV latency is associated with greater joint destruction, our findings suggest that changes in T-cell immunity mediated by viral persistence may affect treatment response and possibly long-term outcomes of RA.  相似文献   

10.

Objective

Obesity is a risk factor for the development of insulin resistance and is one of the most important contributors to the pathogenesis of type2 diabetes, which acts mainly through the secretion of adipokines such as TNF-α that may influence insulin sensitivity. TNF-α affects many aspects of adipocyte function, such as adipocyte development and lipid metabolism.

Material and Methods

We demonstrated that there is a correlation between the expressions of TNF-α in retroperitoneal WAT and insulin-resistance in 8 genetically obese fa/fa rats. Treatment of animals with CL 316,243, a β3-adrenergic agonist, showed an improvement of insulin-resistance that was linked with the suppression of TNF-α mRNA expression in WAT.

Results

These results confirm the association between TNF-α expression and the insulin-resistant condition in rats. Our finding indicates that the hyperglycaemia and hyperinsulinemia induced by insulin-resistance correlated positively with the expression of TNF-α mRNA in an abdominal WAT depot.

Conclusion

We conclude that CL 316,243 possesses both anti-diabetic effects and anti-obesity effects in rodents.  相似文献   

11.

Introduction

Micronized dehydrated human amnion/chorion membrane (μ-dHACM) is derived from donated human placentae and has anti-inflammatory, low immunogenic and anti-fibrotic properties. The objective of this study was to quantitatively assess the efficacy of μ-dHACM as a disease modifying intervention in a rat model of osteoarthritis (OA). It was hypothesized that intra-articular injection of μ-dHACM would attenuate OA progression.

Methods

Lewis rats underwent medial meniscal transection (MMT) surgery to induce OA. Twenty four hours post-surgery, μ-dHACM or saline was injected intra-articularly into the rat joint. Naïve rats also received μ-dHACM injections. Microstructural changes in the tibial articular cartilage were assessed using equilibrium partitioning of an ionic contrast agent (EPIC-μCT) at 21 days post-surgery. The joint was also evaluated histologically and synovial fluid was analyzed for inflammatory markers at 3 and 21 days post-surgery.

Results

There was no measured baseline effect of μ-dHACM on cartilage in naïve animals. Histological staining of treated joints showed presence of μ-dHACM in the synovium along with local hypercellularity at 3 and 21 days post-surgery. In MMT animals, development of cartilage lesions at 21 days was prevented and number of partial erosions was significantly reduced by treatment with μ-dHACM. EPIC-μCT analysis quantitatively showed that μ-dHACM reduced proteoglycan loss in MMT animals.

Conclusions

μ-dHACM is rapidly sequestered in the synovial membrane following intra-articular injection and attenuates cartilage degradation in a rat OA model. These data suggest that intra-articular delivery of μ-dHACM may have a therapeutic effect on OA development.  相似文献   

12.

Background

TGF-β has been postulated to play an important role in the maintenance of epithelial homeostasis and the development of epithelium-derived cancers. However, most of previous studies are mainly focused on the function of TGF-β in immune cells to the development of allergic asthma and how TGF-β signaling in airway epithelium itself in allergic inflammation is largely unknown. Furthermore, the in vivo TGF-β function specifically in the airway epithelium during lung cancer development has been largely elusive.

Methodology/Principal Findings

To evaluate the in vivo contribution of TGF-β signaling in lung epithelium to the development of allergic disease and lung cancer, we generated a transgenic mouse model with Smad7, an intracellular inhibitor of TGF-β signaling, constitutively expressed in mouse airway Clara cells using a mouse CC10 promoter. The mice were subjected to the development of OVA-induced allergic asthma and urethane-induced lung cancer. The Smad7 transgenic animals significantly protected from OVA-induced asthma, with reduced airway inflammation, airway mucus production, extracellular matrix deposition, and production of OVA-specific IgE. Further analysis of cytokine profiles in lung homogenates revealed that the Th2 cytokines including IL-4, IL-5 and IL-13, as well as other cytokines including IL-17, IL-1, IL-6, IP10, G-CSF, and GM-CSF were significantly reduced in the transgenic mice upon OVA induction. In contrast, the Smad7 transgenic animals had an increased incidence of lung carcinogenesis when subjected to urethane treatment.

Conclusion/Significance

These studies, therefore, demonstrate for the first time the in vivo function of TGF-β signaling specifically in airway epithelium during the development of allergic asthma and lung cancer.  相似文献   

13.

Background:

Marine natural products contain a wide range of bioactive compounds with therapeutic properties that have revealed crucial properties in the treatment of some diseases. Some of these compounds have recently received considerable attention for drug discovery. In this study we examined the anti-angiogenic effect of saponin isolated from Holothuria leucospilota (sea cucumber) through evaluation of vascular endothelial growth factor D (VEGF-D) and transforming growth factor-β (TGFβ) expression in a breast cancer cell line.

Methods:

To investigate the effect of SCS on VEGF-D and TGF-β expression in breast cancer cells, the cells were treated with various concentrations of sample. After 48 h the viability of the cells was evaluated by trypan blue staining, and VEGF-D and TGFβ mRNA expression was were evaluated by real time-PCR.

Results:

Our results revealed that SCS can suppress cell viability and VEGF-D and TGFβ mRNA expression in breast cancer cells. Sea cucumber saponin at a concentration of 12 μg/ml inhibited VEGF-D and TGFβ expression more than 90% compared with controls.

Conclusion:

Findings suggest that SCS could inhibit tumor growth via inhibition of angiogenesis.Key Words: Sea cucumber, Saponin, Angiogenesis, Anticancer  相似文献   

14.

Background

Bronchial fibroblasts contribute to airway remodelling, including airway wall fibrosis. Transforming growth factor (TGF)-β1 plays a major role in this process. We previously revealed the importance of the mevalonate cascade in the fibrotic response of human airway smooth muscle cells. We now investigate mevalonate cascade-associated signaling in TGFβ1-induced fibronectin expression by bronchial fibroblasts from non-asthmatic and asthmatic subjects.

Methods

We used simvastatin (1-15 μM) to inhibit 3-hydroxy-3-methlyglutaryl-coenzyme A (HMG-CoA) reductase which converts HMG-CoA to mevalonate. Selective inhibitors of geranylgeranyl transferase-1 (GGT1; GGTI-286, 10 μM) and farnesyl transferase (FT; FTI-277, 10 μM) were used to determine whether GGT1 and FT contribute to TGFβ1-induced fibronectin expression. In addition, we studied the effects of co-incubation with simvastatin and mevalonate (1 mM), geranylgeranylpyrophosphate (30 μM) or farnesylpyrophosphate (30 μM).

Results

Immunoblotting revealed concentration-dependent simvastatin inhibition of TGFβ1 (2.5 ng/ml, 48 h)-induced fibronectin. This was prevented by exogenous mevalonate, or isoprenoids (geranylgeranylpyrophosphate or farnesylpyrophosphate). The effects of simvastatin were mimicked by GGTI-286, but not FTI-277, suggesting fundamental involvement of GGT1 in TGFβ1-induced signaling. Asthmatic fibroblasts exhibited greater TGFβ1-induced fibronectin expression compared to non-asthmatic cells; this enhanced response was effectively reduced by simvastatin.

Conclusions

We conclude that TGFβ1-induced fibronectin expression in airway fibroblasts relies on activity of GGT1 and availability of isoprenoids. Our results suggest that targeting regulators of isoprenoid-dependent signaling holds promise for treating airway wall fibrosis.  相似文献   

15.

Background

Increased pro-inflammatory cytokines in tracheal aspirates correlate with the development of BPD in preterm infants. Ventilation of preterm lambs increases pro-inflammatory cytokines and causes lung inflammation.

Objective

We tested the hypothesis that selective inhibitors of pro-inflammatory signaling would decrease lung inflammation induced by ventilation in preterm newborn lambs. We also examined if the variability in injury response was explained by variations in the endogenous surfactant pool size.

Methods

Date-mated preterm lambs (n = 28) were operatively delivered and mechanically ventilated to cause lung injury (tidal volume escalation to 15 mL/kg by 15 min at age). The lambs then were ventilated with 8 mL/kg tidal volume for 1 h 45 min. Groups of animals randomly received specific inhibitors for IL-8, IL-1, or NF-κB. Unventilated lambs (n = 7) were the controls. Bronchoalveolar lavage fluid (BALF) and lung samples were used to quantify inflammation. Saturated phosphatidylcholine (Sat PC) was measured in BALF fluid and the data were stratified based on a level of 5 μmol/kg (~8 mg/kg surfactant).

Results

The inhibitors did not decrease the cytokine levels or inflammatory response. The inflammation increased as Sat PC pool size in BALF decreased. Ventilated lambs with a Sat PC level > 5 μmol/kg had significantly decreased markers of injury and lung inflammation compared with those lambs with < 5 μmol/kg.

Conclusion

Lung injury caused by high tidal volumes at birth were decreased when endogenous surfactant pool sizes were larger. Attempts to decrease inflammation by blocking IL-8, IL-1 or NF-κB were unsuccessful.  相似文献   

16.

Background

The aim of this study was to examine potential therapeutic effect of the two NO donors NCX 2057 (3-(4-hydroxy-3-methoxyphenyl)-2-propenoic acid) 4-(nitrooxy)butyl ester) and SNP (sodium nitroprusside) on the early allergic airway response in the peripheral lung.

Methods

The experiments were performed in guinea pig lung parenchyma (GPLP) derived from ovalbumin (OVA) sensitized guinea pigs. The effects of NCX 2057 and SNP were evaluated by contractile responses and mediator release during OVA challenge. The generation of nitrite and nitrate was assessed by chemiluminescence. Statistical analysis was evaluated by ANOVA.

Results

Cumulatively increasing concentrations of OVA (1–10,000 ng/ml) induced concentration-dependent contractions of the GPLP that were reduced by NCX 2057 (100 μM, p < 0.001) and SNP (100 μM, p < 0.05). Antigen-induced eicosanoid release was decreased by NCX 2057 (100 μM, p < 0.001) but not by SNP (100 μM), whereas the release of histamine was reduced by SNP (100 μM, p < 0.001) but not by NCX 2057 (100 μM). In addition, NCX 2057 (0.1–100 μM), but not SNP (0.1–100 μM), relaxed leukotriene D4 (10 nM) precontracted GPLP (p < 0.01). The guanylyl cyclase inhibitor ODQ had no effect on the NCX 2057 mediated relaxation. SNP released significantly less nitrite than NCX 2057.

Conclusion

Although both SNP and NCX 2057 reduced the release of pro-inflammatory mediators, their profiles were distinctly different. Furthermore, NCX 2057 also induced smooth muscle dilation in the GPLP. The findings point to specific anti-inflammatory effects of different NO donors in the peripheral lung tissue.  相似文献   

17.

Background

Malaria elimination/eradication campaigns emphasize interruption of parasite transmission as a priority strategy. Screening for new drugs and vaccines against gametocytes is therefore urgently needed. However, current methods for sexual stage drug assays, usually performed by counting or via fluorescent markers are either laborious or restricted to a certain stage. Here we describe the use of a transgenic parasite line for assaying drug sensitivity in all gametocyte stages.

Methods

A transgenic parasite line expressing green fluorescence protein (GFP) under the control of the gametocyte-specific gene α-tubulin II promoter was generated. This parasite line expresses GFP in all gametocyte stages. Using this transgenic line, we developed a flow cytometry-based assay to determine drug sensitivity of all gametocyte stages, and tested the gametocytocidal activities of four antimalarial drugs.

Findings

This assay proved to be suitable for determining drug sensitivity of all sexual stages and can be automated. A Z’ factor of 0.79±0.02 indicated that this assay could be further optimized for high-throughput screening. The daily sensitivity of gametocytes to three antimalarial drugs (chloroquine, dihydroartemisinin and pyronaridine) showed a drastic decrease from stage III on, whereas it remained relatively steady for primaquine.

Conclusions

A drug assay was developed to use a single transgenic parasite line for determining drug susceptibility of all gametocyte stages. This assay may be further automated into a high-throughput platform for screening compound libraries against P. falciparum gametocytes.  相似文献   

18.

Background

Mutations of the amyloid precursor protein gene (APP) are found in familial forms of Alzheimer''s disease (AD) and some lead to the elevated production of amyloid-β-protein (Aβ). While Aβ has been implicated in the causation of AD, the exact role played by Aβ and its APP precursor are still unclear.

Principal Findings

In our study, Drosophila melanogaster transgenics were established as a model to analyze AD-like pathology caused by APP overexpression. We demonstrated that age related changes in the levels and pattern of synaptic proteins accompanied progressive neurodegeneration and impairment of cognitive functions in APP transgenic flies, but that these changes may be independent from the generation of Aβ. Using novel peptide mimetics of Apolipoprotein-E, COG112 or COG133 proved to be neuroprotective and significantly improved the learning and memory of APP transgenic flies.

Conclusions

The development of neurodegeneration and cognitive deficits was corrected by injections of COG112 or COG133, novel mimetics of apolipoprotein-E (apoE) with neuroprotective activities.  相似文献   

19.

Aims

Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression.

Methods and Results

First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3''UTR) of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3''UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3′-UTR binding site. Addition of tumor necrosis factor-α (TNFα) led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = −0.624, p = 0.004).

Conclusions

We found that levels of miRNA-378 could modulate adiponectin expression via the 3''UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression.  相似文献   

20.

Introduction

Fast in-vivo high resolution diffusion tensor imaging (DTI) of the mouse brain has recently been shown to enable cohort studies by the combination of appropriate pulse sequences and cryogenically cooled resonators (CCR). The objective of this study was to apply this DTI approach at the group level to β-amyloid precursor protein (APP) transgenic mice.

Methods

Twelve mice (5 wild type, 7 APP transgenic tg2576) underwent DTI examination at 1562×250 µm3 spatial resolution with a CCR at ultrahigh field (11.7 T). Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding with a total acquisition time of 35 minutes. Fractional anisotropy (FA) maps were statistically compared by whole brain-based spatial statistics (WBSS) at the group level vs. wild type controls.

Results

FA-map comparison showed characteristic regional patterns of differences between the groups with localizations associated with Alzheimer’s disease in humans, such as the hippocampus, the entorhinal cortex, and the caudoputamen.

Conclusion

In this proof-of-principle study, regions associated with amyloid-β deposition could be identified by WBSS of FA maps in APP transgenic mice vs. wild type mice. Thus, DTI in the mouse brain acquired at 11.7 T by use of a CCR was demonstrated to be feasible for cohort studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号