首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of Gram-negative pathogens utilize type III secretion systems (T3SSs) to inject bacterial effector proteins into the host. An important component of T3SSs is a conserved ATPase that captures chaperone-effector complexes and energizes their dissociation to facilitate effector translocation. To date, there has been limited work characterizing the chaperone-T3SS ATPase interaction despite it being a fundamental aspect of T3SS function. In this study, we present the 2.1 Å resolution crystal structure of the Salmonella enterica SPI-2-encoded ATPase, SsaN. Our structure revealed a local and functionally important novel feature in helix 10 that we used to define the interaction domain relevant to chaperone binding. We modeled the interaction between the multicargo chaperone, SrcA, and SsaN and validated this model using mutagenesis to identify the residues on both the chaperone and ATPase that mediate the interaction. Finally, we quantified the benefit of this molecular interaction on bacterial fitness in vivo using chromosomal exchange of wild-type ssaN with mutants that retain ATPase activity but no longer capture the chaperone. Our findings provide insight into chaperone recognition by T3SS ATPases and demonstrate the importance of the chaperone-T3SS ATPase interaction for the pathogenesis of Salmonella.  相似文献   

2.
Salmonella enterica subspecies 1 serovar Typhimurium encodes a type III secretion system (TTSS) within Salmonella pathogenicity island 1 (SPI-1). This TTSS injects effector proteins into host cells to trigger invasion and inflammatory responses. Effector proteins are recognized by the TTSS via signals encoded in their N termini. Specific chaperones can be involved in this process. The chaperones InvB, SicA, and SicP are encoded in SPI-1 and are required for transport of SPI-1-encoded effectors. Several key effector proteins, like SopE and SopE2, are located outside of SPI-1 but are secreted in an SPI-1-dependent manner. It has not been clear how these effector proteins are recognized by the SPI-1 TTSS. Using pull-down and coimmunoprecipitation assays, we found that SopE is copurified with InvB, the known chaperone for the SPI-1-encoded effector protein Sip/SspA. We also found that InvB is required for secretion and translocation of SopE and SopE2 and for stabilization of SopE2 in the bacterial cytosol. Our data demonstrate that effector proteins encoded within and outside of SPI-1 use the same chaperone for secretion via the SPI-1 TTSS.  相似文献   

3.
Salmonella enterica serovar Typhimurium encodes two type III secretion systems (TTSSs) within pathogenicity island 1 (SPI-1) and island 2 (SPI-2). These type III protein secretion and translocation systems transport a panel of bacterial effector proteins across both the bacterial and the host cell membranes to promote bacterial entry and subsequent survival inside host cells. Effector proteins contain secretion and translocation signals that are often located at their N termini. We have developed a ruffling-based translocation reporter system that uses the secretion- and translocation-deficient catalytic domain of SopE, SopE78-240, as a reporter. Using this assay, we determined that the N-terminal 45 amino acid residues of Salmonella SopA are necessary and sufficient for directing its secretion and translocation through the SPI-1 TTSS. SopA1-45, but not SopA1-44, is also able to bind to its chaperone, InvB, indicating that SPI-1 type III secretion and translocation of SopA require its chaperone.  相似文献   

4.
Salmonella phosphothreonine lyase SpvC inactivates the dual-phosphorylated host mitogen-activated protein kinases (MAPK) through β-elimination. While SpvC can be secreted in vitro by both Salmonella pathogenicity island (SPI)-1 and SPI-2 type III secretion systems (T3SSs), translocation of this protein into the host cell cytosol has only been demonstrated by SPI-2 T3SS. In this study, we show that SpvC can be delivered into the host cell cytoplasm by both SPI-1 and SPI-2 T3SSs. Dephosphorylation of the extracellular signal-regulated protein kinases (ERK) was detected in an SPI-1 T3SS-dependent manner 2 h post infection. Using a mouse model for Salmonella enterocolitis, which was treated with streptomycin prior to infection, we observed that mice infected with Salmonella enterica serovar Typhimurium strains lacking the spvC gene showed pronounced colitis when compared with mice infected with the wild-type strain 1 day after infection. The effect of SpvC on the development of colitis was characterized by reduced mRNA levels of the pro-inflammatory cytokines and chemokines, and reduced inflammation with less infiltration of neutrophils. Furthermore, the reduction in inflammation by SpvC resulted in increased bacterial dissemination in spleen of mice infected with Salmonella. Collectively, our findings suggest that SpvC exerts as an anti-inflammatory effector and the attenuation of intestinal inflammatory response by SpvC is involved in systemic infection of Salmonella.  相似文献   

5.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.  相似文献   

6.
A type III secretion system (T3SS) is utilized by a large number of gram-negative bacteria to deliver effectors directly into the cytosol of eukaryotic host cells. One essential component of a T3SS is an ATPase that catalyzes the unfolding of proteins, which is followed by the translocation of effectors through an injectisome. Here we demonstrate a functional role of the ATPase SsaN, a component of Salmonella pathogenicity island 2 T3SS (T3SS-2) in Salmonella enterica serovar Typhimurium. SsaN hydrolyzed ATP in vitro and was essential for T3SS function and Salmonella virulence in vivo. Protein-protein interaction analyses revealed that SsaN interacted with SsaK and SsaQ to form the C ring complex. SsaN and its complex co-localized to the membrane fraction under T3SS-2 inducing conditions. In addition, SsaN bound to Salmonella pathogenicity island 2 (SPI-2) specific chaperones, including SsaE, SseA, SscA, and SscB that facilitated translocator/effector secretion. Using an in vitro chaperone release assay, we demonstrated that SsaN dissociated a chaperone-effector complex, SsaE and SseB, in an ATP-dependent manner. Effector release was dependent on a conserved arginine residue at position 192 of SsaN, and this was essential for its enzymatic activity. These results strongly suggest that the T3SS-2-associated ATPase SsaN contributes to T3SS-2 effector translocation efficiency.  相似文献   

7.
8.
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella’s intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.  相似文献   

9.
Many bacterial pathogens require a type 3 secretion system (T3SS) to establish a niche. Host contact activates bacterial T3SS assembly of a translocon pore in the host plasma membrane. Following pore formation, the T3SS docks onto the translocon pore. Docking establishes a continuous passage that enables the translocation of virulence proteins, effectors, into the host cytosol. Here we investigate the contribution of actin polymerization to T3SS-mediated translocation. Using the T3SS model organism Shigella flexneri, we show that actin polymerization is required for assembling the translocon pore in an open conformation, thereby enabling effector translocation. Opening of the pore channel is associated with a conformational change to the pore, which is dependent upon actin polymerization and a coiled-coil domain in the pore protein IpaC. Analysis of an IpaC mutant that is defective in ruffle formation shows that actin polymerization-dependent pore opening is distinct from the previously described actin polymerization-dependent ruffles that are required for bacterial internalization. Moreover, actin polymerization is not required for other pore functions, including docking or pore protein insertion into the plasma membrane. Thus, activation of the T3SS is a multilayered process in which host signals are sensed by the translocon pore leading to the activation of effector translocation.  相似文献   

10.
11.
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.  相似文献   

12.
Type III secretion systems (TTSS) are used by many Gram-negative pathogens for transporting effector proteins into eukaryotic host cells. Two modes of type III effector protein transport can be distinguished: transport into the surrounding medium (secretion) and cell-contact induced injection of effector proteins directly into the host cell cytosol (translocation). Two domains within the N-terminal regions of effector proteins determine the mode of transport. The amino terminal approximately 20 amino acids (N-terminal secretion signal, NSS) mediate secretion. In contrast, translocation generally requires the NSS, the adjacent approximately 100 amino acids (chaperone binding domain, CBD) and binding of the cognate chaperone to this CBD. TTSS are phylogenetically related to flagellar systems. Because both systems are expressed in Salmonella Typhimurium, correct effector protein transport involves at least two decisions: transport via the Salmonella pathogenicity island 1 (SPI-1) but not the flagellar TTSS (= specificity) and translocation into the host cell instead of secretion into the surrounding media (= transport mode). The mechanisms guiding these decisions are poorly understood. We have studied the S. Typhimurium effector protein SopE, which is specifically transported via the SPI-1 TTSS. Secretion and translocation strictly require the cognate chaperone InvB. Alanine replacement of amino acids 30-42 (and to some extent 44-54) abolished tight InvB binding, abolished translocation into the host cell and led to secretion of SopE via both, the flagellar and the SPI-1 TTSS. In clear contrast to wild-type SopE, secretion of SopE(Ala30-42) and SopE(Ala44-54) via the SPI-1 and the flagellar export system did not require InvB. These data reveal a novel function of the CBD: the CBD inhibits secretion of wild-type SopE via the flagellar and the SPI-1 TTSS in the absence of the chaperone InvB. Our data provide new insights into mechanisms ensuring specific effector protein transport by TTSS.  相似文献   

13.
14.
Bacterium usually utilises type III secretion systems (T3SS) to deliver effectors directly into host cells with the aids of chaperones. Hence, it is very important to identify bacterial T3SS effectors and chaperones for better understanding of host–pathogen interactions. Edwardsiella piscicida is an invasive enteric bacterium, which infects a wide range of hosts from fish to human. Given E. piscicida encodes a functional T3SS to promote infection, very few T3SS effectors and chaperones have been identified in this bacterium so far. Here, we reported that EseK is a new T3SS effector protein translocated by E. piscicida. Bioinformatic analysis indicated that escH and escS encode two putative class I T3SS chaperones. Further investigation indicated that EscH and EscS can enhance the secretion and translocation of EseK. EscH directly binds EseK through undetermined binding domains, whereas EscS binds EseK via its N‐terminal α‐helix. We also found that EseK has an N‐terminal chaperone‐binding domain, which binds EscH and EscS to form a ternary complex. Zebrafish infection experiments showed that EseK and its chaperones EscH and EscS are necessary for bacterial colonisation in zebrafish. This work identified a new T3SS effector, EseK, and its two T3SS chaperones, EscH and EscS, in E. piscicida, which enriches our knowledge of bacterial T3SS effector–chaperone interaction and contributes to our understanding of bacterial pathogenesis.  相似文献   

15.
Bacterial type III secretion system (T3SS) chaperones pilot substrates to the export apparatus in a secretion‐competent state, and are consequently central to the translocation of effectors into target cells. Chlamydia trachomatis is a genetically intractable obligate intracellular pathogen that utilizes T3SS effectors to trigger its entry into mammalian cells. The only well‐characterized T3SS effector is TARP (translocated actin recruitment protein), but its chaperone is unknown. Here we exploited a known structural signature to screen for putative type III secretion chaperones encoded within the C. trachomatis genome. Using bacterial two‐hybrid, co‐precipitation, cross‐linking and size exclusion chromatography we show that Slc1 (SycE‐like chaperone 1; CT043) specifically interacts with a 200‐amino‐acid residue N‐terminal region of TARP (TARP1–200). Slc1 formed homodimers in vitro, as shown in cross‐linking and gel filtration experiments. Biochemical analysis of an isolated Slc1–TARP1–200 complex was consistent with a characteristic 2:1 chaperone–effector stoichiometry. Furthermore, Slc1 was co‐immunoprecipitated with TARP from C. trachomatis elementary bodies. Also, coexpression of Slc1 specifically enhanced host cell translocation of TARP by a heterologous Yersinia enterocolitica T3SS. Taken together, we propose Slc1 as a chaperone of the C. trachomatis T3SS effector TARP.  相似文献   

16.
Secretion of bacterial effector proteins into host cells plays a key role in bacterial virulence. Yet, the dynamics of the secretion systems activity remains poorly understood, especially when machineries deal with the export of numerous effectors. We address the question of multi-effector secretion by focusing on the Legionella pneumophila Icm/Dot T4SS that translocates a record number of 300 effectors. We set up a kinetic translocation assay, based on the β-lactamase translocation reporter system combined with the effect of the protonophore CCCP. When used for translocation analysis of Icm/Dot substrates constitutively produced by L. pneumophila, this assay allows a fine monitoring of the secretion activity of the T4SS, independently of the expression control of the effectors. We observed that effectors are translocated with a specific timing, suggesting a control of their docking/translocation by the T4SS. Their delivery is accurately organized to allow effective manipulation of the host cell, as exemplified by the sequential translocation of effectors targeting Rab1, namely SidM/DrrA, LidA, LepB. Remarkably, the timed delivery of effectors does not depend only on their interaction with chaperone proteins but implies cyclic-di-GMP signaling, as the diguanylate cyclase Lpl0780/Lpp0809, contributes to the timing of translocation.  相似文献   

17.
The enteropathogen Vibrio parahaemolyticus possesses two sets of type III secretion systems, T3SS1 and T3SS2. Effector proteins secreted by these T3SSs are delivered into host cells, leading to cell death or diarrhea. However, it is not known how specific effectors are secreted through a specific T3SS when both T3SSs are expressed within bacteria. One molecule thought to determine secretion specificity is a T3SS-associated chaperone; however, no T3SS2-specific chaperone has been identified. Therefore, we screened T3SS2 chaperone candidates by a pull-down assay using T3SS2 effectors fused with glutathione-S-transferase. A secretion assay revealed that the newly identified cognate chaperone VocC for the T3SS2-specific effector VopC was required for the efficient secretion of the substrate through T3SS2. Further experiments determined the chaperone-binding domain and the amino-terminal secretion signal of the cognate effector. These findings, in addition to the previously identified T3SS1-specific chaperone, VecA, provide a strategy to clarify the specificity of effector secretion through T3SSs of V.?parahaemolyticus.  相似文献   

18.
Type III secretion systems (T3SSs) of bacterial pathogens involve the assembly of a surface-localized needle complex, through which translocon proteins are secreted to form a pore in the eukaryotic cell membrane. This enables the transfer of effector proteins from the bacterial cytoplasm to the host cell. A structure known as the C-ring is thought to have a crucial role in secretion by acting as a cytoplasmic sorting platform at the base of the T3SS. Here, we studied SsaQ, an FliN-like putative C-ring protein of the Salmonella pathogenicity island 2 (SPI-2)-encoded T3SS. ssaQ produces two proteins by tandem translation: a long form (SsaQ(L)) composed of 322 amino acids and a shorter protein (SsaQ(S)) comprising the C-terminal 106 residues of SsaQ(L). SsaQ(L) is essential for SPI-2 T3SS function. Loss of SsaQ(S) impairs the function of the T3SS both ex vivo and in vivo. SsaQ(S) binds to its corresponding region within SsaQ(L) and stabilizes the larger protein. Therefore, SsaQ(L) function is optimized by a novel chaperone-like protein, produced by tandem translation from its own mRNA species.  相似文献   

19.
The type III secretion system (TTSS) encoded by Salmonella Pathogenicity Island 2 (SPI-2) is required for systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. The SPI-2 TTSS is activated after internalization of bacteria by host cells, and translocates effector proteins into and across the vacuolar membrane, where they interfere with several host cell functions. Here, we investigated the function of SsaM, a small protein encoded within SPI-2. An ssaM deletion mutant had virulence and intracellular replication defects comparable to those of a SPI-2 TTSS null mutant. Although the ssaM mutant was able to secrete the effector protein SseJ in vitro, it failed to translocate SseJ into host cells, and to secrete the translocon proteins SseB, SseC and SseD in vitro. This phenotype is similar to that of a strain carrying a mutation in the SPI-2 gene spiC, whose product is reported to be an effector involved in trafficking of the Salmonella vacuole in macrophages. Both ssaM and spiC mutants were found to oversecrete the SPI-2 effector proteins SseJ and PipB in vitro. Fractionation assays and immunofluorescence microscopy were used to investigate the localization of SsaM and SpiC in macrophages. No evidence for translocation of these proteins was obtained. The similar phenotypes of the ssaM and spiC mutants suggested that they might be involved in the same function. Pull-down and co-immune precipitation experiments showed that SpiC and SsaM interact within the bacterial cell. We propose that a complex involving SsaM and SpiC distinguishes between translocators and effector proteins, and controls their ordered secretion through the SPI-2 TTSS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号