首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual selection is responsible for the evolution of male ornaments and armaments, but its role in the evolution of cognition—the ability to process, retain and use information—is largely unexplored. Because successful courtship is likely to involve processing information in complex, competitive sexual environments, we hypothesized that sexual selection contributes to the evolution and maintenance of cognitive abilities in males. To test this, we removed mate choice and mate competition from experimental populations of Drosophila melanogaster by enforcing monogamy for over 100 generations. Males evolved under monogamy became less proficient than polygamous control males at relatively complex cognitive tasks. When faced with one receptive and several unreceptive females, polygamous males quickly focused on receptive females, whereas monogamous males continued to direct substantial courtship effort towards unreceptive females. As a result, monogamous males were less successful in this complex setting, despite being as quick to mate as their polygamous counterparts with only one receptive female. This diminished ability to use past information was not limited to the courtship context: monogamous males (but not females) also showed reduced aversive olfactory learning ability. Our results provide direct experimental evidence that the intensity of sexual selection is an important factor in the evolution of male cognitive ability.  相似文献   

2.
The spectacular variability that typically characterizes male genital traits has largely been attributed to the role of sexual selection. Among the evolutionary mechanisms proposed to account for this diversity, two processes in particular have generated considerable interest. On the one hand, females may exploit postcopulatory mechanisms of selection to favour males with preferred genital traits (cryptic female choice; CFC), while on the other hand females may evolve structures or behaviours that mitigate the direct costs imposed by male genitalia (sexual conflict; SC). A critical but rarely explored assumption underlying both processes is that male and female reproductive traits coevolve, either via the classic Fisherian model of preference-trait coevolution (CFC) or through sexually antagonistic selection (SC). Here, we provide evidence for this prediction in the guppy (Poecilia reticulata), a polyandrous livebearing fish in which males transfer sperm internally to females via consensual and forced matings. Our results from a paternal half-sibling breeding design reveal substantial levels of additive genetic variation underlying male genital size and morphology—two traits known to predict mating success during non-consensual matings. Our subsequent finding that physically interacting female genital traits exhibit corresponding levels of genetic (co)variation reveals the potential intersexual coevolutionary dynamics of male and female genitalia, thereby fulfilling a fundamental assumption underlying CFC and SC theory.  相似文献   

3.
In many species, males rely on sexual ornaments to attract females. Females, by contrast, rarely produce ornaments. The glow-worm (Lampyris noctiluca) is an exception where wingless females glow to attract males that fly in search of females. However, little is known about the factors that promote the evolution of female ornaments in a sexual selection context. Here, we investigated if the female ornament of the glow-worm is a signal of fecundity used in male mate choice. In support of this, we found brightness to correlate with female fecundity, and males to prefer brighter dummy females. Thus, the glow emitted by females is a reliable sexual signal of female fecundity. It is likely that male preference for the fecundity-indicating ornament has evolved because of large variation among females in fecundity, and because nocturnal males cannot directly assess female size and fecundity. These results indicate that female ornamentation may evolve in capital breeders (i.e. those in which stored resources are invested in reproduction) when females vary significantly in fecundity and this variation cannot be assessed directly by males.  相似文献   

4.
In many anuran species, males vocalize to attract females but will grasp any female that comes within reach and retain their hold unless displaced by a rival male. Thus, female anurans may face strong selection to repel unwanted suitors, but no mechanism is known for doing so. We suggest that a defensive trait (the ability to inflate the body to ward off attack) has been co-opted for this role: by inflating their bodies, females are more difficult for males to grasp and hence, it is easier for another male to displace an already amplexed rival. Inflating a model female cane toad (Bufo marinus) strongly reduced a male''s ability to maintain amplexus; and females who were experimentally prevented from inflating their bodies experienced no successful takeovers from rival males, in contrast to control females. Thus, the ability of a female cane toad to inflate her body may allow her to manipulate the outcome of male–male competition. This overlooked mechanism of anuran mate choice may reflect a common evolutionary pattern, whereby females co-opt defensive traits for use in sexual selection.  相似文献   

5.
Cuticular hydrocarbons (CHCs) play an essential role in mate recognition in insects but the form and intensity of sexual selection on CHCs has only been evaluated in a handful of studies, and never in a natural population. We quantified sexual selection operating on CHCs in a wild population of sagebrush crickets, a species in which nuptial feeding by females imposes an unambiguous phenotypic marker on males. Multivariate selection analysis revealed a saddle-shaped fitness surface, suggesting a complex interplay between the total abundance of CHCs and specific CHC combinations in their influence on female choice. The fitness surface resulting from two axes of disruptive selection reflected a trade-off between short- and long-chained CHCs, suggesting that males may be sacrificing some level of desiccation resistance in favour of increased attractiveness. There was a significant correlation between male body size and total CHC abundance, suggesting that male CHCs provide females with a reliable cue for maximizing benefits obtained from males. Notwithstanding the conspicuousness of males’ acoustic signals, our results suggest that selection imposed on males via female mating preferences may be far more complex than previously appreciated and operating in multiple sensory modalities.  相似文献   

6.
Post-mating reduction in immune defence is common in female insects, and a trade-off between mating and immunity could affect the evolution of immunity. In this work, we tested the capacity of virgin and mated female Drosophila melanogaster to defend against infection by four bacterial pathogens. We found that female D. melanogaster suffer post-mating immunosuppression in a pathogen-dependent manner. The effect of mating was seen after infection with two bacterial pathogens (Providencia rettgeri and Providencia alcalifaciens), though not after infection with two other bacteria (Enterococcus faecalis and Pseudomonas aeruginosa). We then asked whether the evolution of post-mating immunosuppression is primarily a ‘female’ or ‘male’ trait by assaying for genetic variation among females for the degree of post-mating immune suppression they experience and among males for the level of post-mating immunosuppression they elicit in their mates. We also assayed for an interaction between male and female genotypes to test the specific hypothesis that the evolution of a trade-off between mating and immune defence in females might be being driven by sexual conflict. We found that females, but not males, harbour significant genetic variation for post-mating immunosuppression, and we did not detect an interaction between female and male genotypes. We thus conclude that post-mating immune depression is predominantly a ‘female’ trait, and find no evidence that it is evolving under sexual conflict.  相似文献   

7.
Whenever males can monopolize females and/or resources used by females, the opportunity for sexual selection will be great. The greater the variation among males in reproductive success, the greater the intensity of selection on less competitive males to gain matings through alternative tactics. In the yellow dung fly, Scathophaga stercoraria, males aggressively compete for access to receptive, gravid females on fresh dung. Larger males are better able to acquire mates and to complete copulation successfully and guard the female throughout oviposition. Here we demonstrate that when an alternative resource is present where females aggregate (i.e. apple pomace, where both sexes come to feed), smaller males will redirect their searching for females from dung to the new substrate. In addition, we identify a class of particularly small males on the alternative substrate that appears never to be present searching for females on or around dung. Smaller males were found to have a mating ‘advantage’ on pomace, in striking contrast to the pattern observed on dung, providing further support for the existence of an alternative male reproductive tactic in this species.  相似文献   

8.
The mechanisms regulating sexual behaviours in female vertebrates are still poorly understood, mainly because in most species sexual displays in females are more subtle and less frequent than displays in males. In a sex-role reversed population of a teleost fish, the peacock blenny Salaria pavo, an external fertilizer, females are the courting sex and their sexual displays are conspicuous and unambiguous. We took advantage of this to investigate the role of ovarian-synthesized hormones in the induction of sexual displays in females. In particular, the effects of the sex steroids oestradiol (E2) and testosterone (T) and of the prostaglandin F2α (PGF2α) were tested. Females were ovariectomized and their sexual behaviour tested 7 days (sex steroids and PGF2α) and 14 days (sex steroids) after ovariectomy by presenting females to an established nesting male. Ovariectomy reduced the expression of sexual behaviours, although a significant proportion of females still courted the male 14 days after the ovary removal. Administration of PGF2α to ovariectomized females recovered the frequency of approaches to the male''s nest and of courtship displays towards the nesting male. However, E2 also had a positive effect on sexual behaviour, particularly on the frequency of approaches to the male''s nest. T administration failed to recover sexual behaviours in ovariectomized females. These results suggest that the increase in E2 levels postulated to occur during the breeding season facilitates female mate-searching and assessment behaviours, whereas PGF2α acts as a short-latency endogenous signal informing the brain that oocytes are mature and ready to be spawned. In the light of these results, the classical view for female fishes, that sex steroids maintain sexual behaviour in internal fertilizers and that prostaglandins activate spawning behaviours in external fertilizers, needs to be reviewed.  相似文献   

9.
Multiple mating by females is widely thought to encourage post-mating sexual selection and enhance female fitness. We show that whether polyandrous mating has these effects depends on two conditions. Condition 1 is the pattern of sperm utilization by females; specifically, whether, among females, male mating number, m (i.e. the number of times a male mates with one or more females) covaries with male offspring number, o. Polyandrous mating enhances sexual selection only when males who are successful at multiple mating also sire most or all of each of their mates'' offspring, i.e. only when Cov(m,o), is positive. Condition 2 is the pattern of female reproductive life-history; specifically, whether female mating number, m, covaries with female offspring number, o. Only semelparity does not erode sexual selection, whereas iteroparity (i.e. when Cov(m,o), is positive) always increases the variance in offspring numbers among females, which always decreases the intensity of sexual selection on males. To document the covariance between mating number and offspring number for each sex, it is necessary to assign progeny to all parents, as well as identify mating and non-mating individuals. To document significant fitness gains by females through iteroparity, it is necessary to determine the relative magnitudes of male as well as female contributions to the total variance in relative fitness. We show how such data can be collected, how often they are collected, and we explain the circumstances in which selection favouring multiple mating by females can be strong or weak.  相似文献   

10.
In 1950, Rensch noted that in clades where males are the larger sex, sexual size dimorphism (SSD) tends to be more pronounced in larger species. This fundamental allometric relationship is now known as ‘Rensch''s rule’. While most researchers attribute Rensch''s rule to sexual selection for male size, experimental evidence is lacking. Here, we suggest that ultimate hypotheses for Rensch''s rule should also apply to groups of individuals and that individual trait plasticity can be used to test those hypotheses experimentally. Specifically, we show that in the sex-changing fish Parapercis cylindrica, larger males have larger harems with larger females, and that SSD increases with harem size. Thus, sexual selection for male body size is the ultimate cause of sexual size allometry. In addition, we experimentally illustrate a positive relationship between polygyny potential and individual growth rate during sex change from female to male. Thus, sexual selection is the ultimate cause of variation in growth rate, and variation in growth rate is the proximate cause of sexual size allometry. Taken together, our results provide compelling evidence in support of the sexual selection hypothesis for Rensch''s rule and highlight the potential importance of individual growth modification in the shaping of morphological patterns in Nature.  相似文献   

11.
Maintaining polymorphisms for genes with effects of ecological significance may involve conflicting selection in males and females. We present data from a captive population of ruffs (Philomachus pugnax) showing that a dominant allele controls development into both small, ‘female mimic’ males (‘faeders’), and a previously undescribed class of small ‘female faeders’. Most male ruffs have elaborate breeding plumage and display behaviour, but 0.5–1.5% are faeders, which lack both. Females from a captive population previously lacking faeders were bred with two founder faeder males and their faeder sons. The faeders’ offspring had a quadrimodal size distribution comprising normal-sized males and females, faeders and atypically small females. By contrast, ornamented males fathered only normal-sized offspring. We conclude that both founding faeders were heterozygous for a faeder allele absent from the original population. This allele is dominant to previously described genes that determine development into independent versus satellite ornamented males. Unlike those genes, the faeder allele is clearly expressed in females. Small body size is a component of the male faeder mating strategy, but provides no obvious benefit to females. Bisexual expression of the gene provides the opportunity to quantify the strength of sexually antagonistic selection on a Mendelian trait.  相似文献   

12.
Parthenogenesis-inducing (PI) Wolbachia belong to a class of intracellular symbionts that distort the offspring sex ratio of their hosts toward a female bias. In many PI Wolbachia-infected species sex ratio distortion has reached its ultimate expression-fixation of infection and all-female populations. This is only possible with thelytokous PI symbionts as they provide an alternative form of reproduction and remove the requirement for males and sexual reproduction. Many populations fixed for PI Wolbachia infection have lost the ability to reproduce sexually, even when cured of the infection. We examine one such population in the species Trichogramma pretiosum. Through a series of backcrossing experiments with an uninfected Trichogramma pretiosum population we were able to show that the genetic basis for the loss of female sexual function could be explained by a dominant nuclear effect. Male sexual function had not been completely lost, though some deterioration of male sexual function was also evident when males from the infected population (created through antibiotic curing of infected females) were mated to uninfected females. We discuss the dynamics of sex ratio selection in PI Wolbachia-infected populations and the evolution of non-fertilizing mutations.  相似文献   

13.
Maternal inheritance of mitochondria creates a sex-specific selective sieve with implications for male longevity, disease susceptibility and infertility. Because males are an evolutionary dead end for mitochondria, mitochondrial mutations that are harmful or beneficial to males but not females cannot respond directly to selection. Although the importance of this male/female asymmetry in evolutionary response depends on the extent to which mitochondrial mutations exert antagonistic effects on male and female fitness, few studies have documented sex-specific selection acting on mitochondria. Here, we exploited the discovery of two highly divergent mitochondrial haplogroups (A and B2) in central Panamanian populations of the pseudoscorpion Cordylochernes scorpioides. Next-generation sequencing and phylogenetic analyses suggest that selection on the ND4 and ND4L mitochondrial genes may partially explain sexually antagonistic mitochondrial effects on reproduction. Males carrying the rare B2 mitochondrial haplogroup enjoy a marked advantage in sperm competition, but B2 females are significantly less sexually receptive at second mating than A females. This reduced propensity for polyandry is likely to significantly reduce female lifetime reproductive success, thereby limiting the spread of the male beneficial B2 haplogroup. Our findings suggest that maternal inheritance of mitochondria and sexually antagonistic selection can constrain male adaptation and sexual selection in nature.  相似文献   

14.
I examined the effects of the parasitic larval nematode, Eustrongylides ignotus, on male mate choice in the western mosquitofish, Gambusia affinis. I hypothesized that parasite presence influences male mate choice either directly (via reduction in male mating behavior due to presence of parasite in females) or indirectly (via reduction in male mating behavior due to reduced condition of infected females). Specifically, I tested the predictions that (1) males would mate preferentially with uninfected over infected females (scoring both mating attempts and association time with females); (2) parasitized females would be in poorer condition than non-parasitized females (measured as soluble fat stores); and (3) parasitized females would have reduced fecundity (measured as number of developing embryos). Males preferred to mate with non-parasitized over parasitized females, but showed no differences in association time between females. The nematode did not decrease female body condition, but did decrease female mass, and appeared to decrease female fecundity via reduction in broods (# embryos). Results support that parasites affect male mate choice in mosquitofish; however, the mechanisms used by males to differentiate between parasitized and non-parasitized females remain untested. This study provides the first empirical evidence of parasite affects on male mate choice in livebearing fishes, and suggest a potentially important role for parasite-mediated sexual selection in organisms that use coercive mating as the primary mechanism of obtaining mates.  相似文献   

15.
The contemporary explanation for the rapid evolutionary diversification of animal genitalia is that such traits evolve by post‐copulatory sexual selection. Here, we test the hypothesis that the male genital spines of Drosophila ananassae play an adaptive role in post‐copulatory sexual selection. Whereas previous work on two Drosophila species shows that these spines function in precopulatory sexual selection to initiate genital coupling and promote male competitive copulation success, further research is needed to evaluate the potential for Drosophila genital spines to have a post‐copulatory function. Using a precision micron‐scale laser surgery technique, we test the effect of spine length reduction on copulation duration, male competitive fertilization success, female fecundity and female remating behaviour. We find no evidence that male genital spines in this species have a post‐copulatory adaptive function. Instead, females mated to males with surgically reduced/blunted genital spines exhibited comparatively greater short‐term fecundity relative to those mated by control males, indicating that the natural (i.e. unaltered) form of the trait may be harmful to females. In the absence of an effect of genital spine reduction on measured components of post‐copulatory fitness, the harm seems to be a pleiotropic side effect rather than adaptive. Results are discussed in the context of sexual conflict mediating the evolution of male genital spines in this species and likely other Drosophila.  相似文献   

16.
Diversification in sexual signals is often taken as evidence for the importance of sexual selection in speciation. However, in order for sexual selection to generate reproductive isolation between populations, both signals and mate preferences must diverge together. Furthermore, assortative mating may result from multiple behavioral mechanisms, including female mate preferences, male mate preferences, and male–male competition; yet their relative contributions are rarely evaluated. Here, we explored the role of mate preferences and male competitive ability as potential barriers to gene flow between 2 divergent lineages of the tawny dragon lizard, Ctenophorus decresii, which differ in male throat coloration. We found stronger behavioral barriers to pairings between southern lineage males and northern lineage females than between northern males and southern females, indicating incomplete and asymmetric behavioral isolating barriers. These results were driven by both male and female mate preferences rather than lineage differences in male competitive ability. Intrasexual selection is therefore unlikely to drive the outcome of secondary contact in C. decresii, despite its widely acknowledged importance in lizards. Our results are consistent with the emerging view that although both male and female mate preferences can diverge alongside sexual signals, speciation is rarely driven by divergent sexual selection alone.  相似文献   

17.
Bateman''s principle is not only used to explain sex differences in mating behaviour, but also to determine which sex has the greater opportunity for sexual selection. It predicts that the relationship between the number of mates and the number of offspring produced should be stronger for males than for females. Yet, it is unclear whether Bateman''s principle holds in cooperatively breeding systems where the strength of selection on traits used in intrasexual competition is high in both sexes. We tested Bateman''s principle in the cooperatively breeding superb starling (Lamprotornis superbus), finding that only females showed a significant, positive Bateman gradient. We also found that the opportunity for selection was on average higher in females, but that its strength and direction oscillated through time. These data are consistent with the hypothesis that sexual selection underlies the female trait elaboration observed in superb starlings and other cooperative breeders. Even though the Bateman gradient was steeper for females than for males, the year-to-year oscillation in the strength and direction of the opportunity for selection likely explains why cooperative breeders do not exhibit sexual role reversal. Thus, Bateman''s principle may not hold in cooperative breeders where both sexes appear to be under mutually strong sexual selection.  相似文献   

18.
Male damselflies possess very specialized genitalia. Females mate multiply and store sperm in two sperm storage organs, the bursa copulatrix and the spermatheca. During copulation, males physically remove the sperm stored in these organs using their genitalia. I document a novel mechanism by which males gain access to the spermatheca in Calopteryx haemorrhoidalis asturica. The mechanism is based on male stimulation of the female sensory system that controls egg fertilization and laying. During copulation, the aedeagus (a male genitalic structure indirectly involved in sperm transfer) distorts the cuticular plates in the female genital tract that bear mechanoreceptive sensilla. This stimulation results in sperm ejection from the spermatheca. Aedeagus width is positively correlated with the amount of sperm ejected. I propose that males have exploited a pre-existing female sensory bias to gain access to otherwise physically unreachable sperm. These results shed light on the issue of the origin of female preferences in current models of sexual selection and on the evolution of genitalia via sexual selection. It is postulated that females might use this process as a form of post-copulatory sexual selection on the basis of males'' genitalia.  相似文献   

19.
In internally fertilizing species male genitalia often show a higher degree of elaboration than required for simply transferring sperm to females. Among the hypotheses proposed to explain such diversity, sexual selection has received the most empirical support, with studies revealing that genital morphology can be targeted by both pre-and postcopulatory sexual selection. Until now, most studies have focused on these two episodes of selection independently. Here, we take an alternative approach by considering both components simultaneously in the livebearing fish, Poecilia reticulata. We allowed females to mate successively (and cooperatively) with two males and determined whether male genital length influenced the female's propensity to mate with a male (precopulatory selection, via female choice) and whether male genital size and shape predicted the relative paternity share of subsequent broods (postcopulatory selection, via sperm competition/cryptic female choice). We found no evidence that either episode of sexual selection targets male genital size or shape. These findings, in conjunction with our recent work exposing a role of genital morphology in mediating unsolicited (forced) matings in guppies, further supports our prior speculation that sexual conflict may be an important broker of genital evolution in this species.  相似文献   

20.
Across sexually reproducing species, males and females are in conflict over the control of reproduction. At the heart of this conflict in a number of taxa is male harassment of females for mating opportunities and female strategies to avoid this harassment. One neglected consequence that may result from sexual harassment is the disruption of important social associations. Here, we experimentally manipulate the degree of sexual harassment that wild female guppies (Poecilia reticulata) experience by establishing replicated, semi-natural pools with different population sex ratios. We quantify the effects of sexual harassment on female social structure and the development of social recognition among females. When exposed to sexual harassment, we found that females had more disparate social networks with limited repeated interactions when compared to females that did not experience male harassment. Furthermore, females that did not experience harassment developed social recognition with familiar individuals over an 8-day period, whereas females that experienced harassment did not, an effect we suggest is due to disruption of association patterns. These results show that social network structure and social recognition can be affected by sexual harassment, an effect that will be relevant across taxonomic groups and that we predict will have fitness consequences for females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号