首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Calmodulin (CaM) and troponin C (TnC) are EF-hand proteins that play fundamentally different roles in animal physiology. TnC has a very low affinity for the plasma membrane Ca2+-ATPase and is a poor substitute for CaM in increasing the enzyme's affinity for Ca2+ and the rate of ATP hydrolysis. We use a series of recombinant TnC (rTnC)/CaM chimeras to clarify the importance of the CaM carboxyl-terminal domain in the activation of the plasma membrane Ca2+-ATPase. The rTnC/CaM chimera, in which the carboxyl-terminal domain of TnC is replaced by that of CaM, has the same ability as CaM to bind and transmit the signal to Ca2+ sites on the enzyme. There is no further functional gain when the amino-terminal domain is modified to make the rTnC/CaM chimera more CaM-like. To identify which regions of the carboxyl-terminal domain of CaM are responsible for these effects, we constructed the chimeras rTnC/3CaM and rTnC/4CaM, where only one-half of the C-terminal domain of CaM (residues 85-112 or residues 113-148) replaces the corresponding region in rTnC. Neither rTnC/3CaM nor rTnC/4CaM can mimic CaM in its affinity for the enzyme. Nevertheless, with respect to the signal transduction process, rTnC/4CaM, but not rTnC/3CaM, shows the same behaviour as CaM. We conclude that the whole C-terminal domain is required for binding to the enzyme while Ca2+-binding site 4 of CaM bears all the requirements to increase Ca2+ binding at PMCA sites. Such mechanism of binding and activation is distinct from that proposed for most other CaM targets. Furthermore, we suggest that Ala128 and Met124 from CaM site 4 may play a crucial role in discriminating CaM from TnC.  相似文献   

3.
Using site-directed mutagenesis, we have produced three calmodulin (CaM) mutants in which one or the two tyrosine residues of native CaM were substituted by phenylalanine. The three variants, denoted CaM(Y99F), CaM(Y138F), and CaM(Y99F/Y138F), were highly expressed in transformed Escherichia coli BL21(DE3)pLysS and purified in high yield. The three CaM mutants were able to activate the cyclic nucleotide phosphodiesterase and the plasma membrane Ca(2+)-ATPase, and present the characteristic Ca(2+)-induced electrophoretic mobility shift of native CaM. CaM(Y138F) and CaM(Y99F/Y138F), however, showed a slightly higher electrophoretic mobility than CaM(Y99F) or wild type CaM. The molar extinction coefficient of native CaM at 276 nm decreases 50% in CaM(Y99F) and CaM(Y138F), while the 276nm peak disappears in CaM(Y99F/Y138F). Terbium fluorescence studies with the different CaM mutants indicate that Y99 (but not Y138) closely interacts with Ca(2+) in the III Ca(2+)-binding domain. The epidermal growth factor receptor (EGFR) and the non-receptor tyrosine kinase c-Src phosphorylate CaM(Y99F) and CaM(Y138F) at a lesser extent than wild type CaM, while they fail to phosphorylate CaM(Y99F/Y138F) as expected. All resulting phospho-(Y)CaM species present the characteristic Ca(2+)-induced electrophoretic mobility shift observed in non-phosphorylated CaM. Quantitative analysis of the different phospho-(Y)CaM species suggests that the relative phosphorylation of Y99 and Y138 in wild type CaM by both the EGFR and c-Src is different than the respective phosphorylation of either Y99 in CaM(Y138F) or Y138 in CaM(Y99F).  相似文献   

4.
Ca2+/Calmodulin-dependent protein kinase (CaM kinase) regulatory system is composed of multifunctional CaM kinases such as CaM kinases IV and I, upstream CaM kinases such as CaM kinase kinases alpha and beta, which activate multifunctional CaM kinases, and CaM kinase phosphatases such as CaM kinase phosphatase and CaM kinase phosphatase N, which deactivate the activated multifunctional CaM kinases. To understand the combinations of CaM kinases I and IV, CaM kinase kinases alpha and beta, and CaM kinase phosphatases, the locations of the enzymes in the cell were examined by immunocytochemical studies of cultured cells. The results indicate that CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase occur in the cytoplasm and that CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N occur inside the cellular nucleus, suggesting that there are at least two different sets of CaM kinase regulatory systems, one consisting of CaM kinase I, CaM kinase kinase beta, and CaM kinase phosphatase in the cytoplasm and the other consisting of CaM kinase IV, CaM kinase kinase alpha (and CaM kinase kinase beta in some cell types and tissues), and CaM kinase phosphatase N in the nucleus.  相似文献   

5.
6.
Wu X  Bers DM 《Cell calcium》2007,41(4):353-364
Calmodulin (CaM) is a ubiquitous Ca2+ binding protein and Ca2+-CaM activates many cellular targets and functions. While much of CaM is thought to be protein bound, quantitative data in cardiac myocytes is lacking regarding CaM location, [CaM]free and CaM redistribution during changes in [Ca2+]i. Here, we demonstrated that in adult rabbit cardiac myocytes, CaM is highly concentrated at Z-lines (confirmed by Di-8-ANEPPS staining of transverse tubules) using three different approaches: immunocytochemistry (endogenous CaM), Alexa Fluor 488 conjugate CaM (F-CaM) in both permeabilized cells (exogenous CaM) and in patch clamped intact cells (via pipette dialysis). Using 100 nM [CaM]free we washed F-CaM into permeabilized myocytes and saw a two-phase (fast and slow) CaM binding curve with a plateau after 40 min of F-CaM wash-in. We also measured myocyte [CaM]free using two modified null-point titration methods, finding [CaM]free to be 50-75 nM (which is only 1% of total [CaM]). Higher [Ca2+]i increased CaM binding especially in the nucleus and at Z-lines and significantly slowed F-CaM dissociation rate when F-CaM was washed out of permeabilized myocytes. Additionally, in both permeabilized and intact myocytes, CaM moved into the nucleus when [Ca2+]i was elevated, and this was reversible. We conclude that [CaM]free is very low in myocytes even at resting [Ca2+]i, indicating intense competition of CaM targets for free CaM. Bound CaM is relatively concentrated at Z-lines at rest but translocates significantly to the nucleus upon elevation of [Ca2+]i, which may influence activation of different targets and cellular functions.  相似文献   

7.
F-STOP is a microtubule-associated protein that stabilizes microtubules in a calmodulin (CaM)-dependent manner. All members of the stable tubule only polypeptide (STOP) family have a central domain that contains nearly identical multiple repeats, and a CaM binding motif is present in multiple copies within this domain. We present here an analysis of this CaM binding interaction and find that it is highly unusual in nature. For this work, we synthesized two model peptides of a single STOP central repeat motif and analyzed their binding to CaM by fluorescence, circular dichroism, infrared and NMR spectroscopy. Both peptides bind to CaM with an affinity of 4 microM, similar to that of the native protein. Results indicate that the peptides bind CaM in an atypical manner. Binding is highly dependent on the concentration of cations, indicating that it is to some extent electrostatic. Further, IR and CD analysis shows that, in contrast to typical CaM binding reactions, CaM does not change in helical structure on binding. NMR mapping confirms that CaM remains in extended conformation on binding a single STOP peptide. Binding of a single peptide to CaM occurs principally in the CaM C-terminal region, and the C-terminal domain of CaM effectively competes for STOP binding. Our results establish that CaM binds STOP in an unusual manner, involving mainly the C-terminus of CaM, thus leaving CaM potentially accessible for another binding partner at the N-terminus. This intriguing possibility could be of physiological importance in F-STOP mediated CaM regulation of microtubule dynamics or stability, specifically during mitosis where CaM and STOP colocalize.  相似文献   

8.
Tetrahymena calmodulin (CaM) differs from mammalian CaM in its ability to activate Tetrahymena guanylate cyclase. Of 12 differences in amino acid sequence, two occur near the carboxyl terminus (Gln-143----Arg and Thr-146----deletion). To investigate the functional significance of the carboxyl-terminal region in activation of the guanylate cyclase, three mutated CaMs were engineered by using cassette mutagenesis of rat CaM cDNA: Gln-143----Arg (CaM.A), Thr-146----deletion (CaM.D), and Gln-143----Arg/Thr-146 deletion (CaM.AD). Recombinant wild type CaM (wCaM), CaM.A, CaM.D, and CaM.AD were indistinguishable in their ability to activate cyclic AMP phosphodiesterase. The two mutated CaMs (CaM.A and CaM.AD) with the Gln-143 replacement activated guanylate cyclase of Tetrahymena plasma membrane in the presence of Ca2+, with the maximal activation being half of that produced by Tetrahymena CaM. In contrast, neither CaM.D nor wCaM could stimulate the cyclase activity. A CaM antagonist, W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), prevented the cyclase activation by either Tetrahymena CaM, CaM.A, or CaM.AD. Thus, we conclude that Arg-143 is in a region of the molecule involved in activation of Tetrahymena guanylate cyclase. The data also suggest that the cyclase activation by Tetrahymena CaM requires complex macromolecular interactions between the entire CaM molecule and the enzyme.  相似文献   

9.
Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model system to study the effect of CaM gene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated. We show that CaM is essential for survival of vertebrate cells as they die in the absence of CaM expression. Reversal of CaM repression or ectopic expression of HA-tagged CaM rescued the cells. Cells exclusively expressing HA-CaM with impaired individual calcium binding domains as well as HA-CaM lacking the ability to be phosphorylated at residues Tyr(99)/Tyr(138) or trimethylated at Lys(115) survived and grew well. CaM mutated at both Ca(2+) binding sites 3 and 4 as well as at both sites 1 and 2, but to a lesser degree, showed decreased ability to support cell growth. Cells expressing CaM with all calcium binding sites impaired died with kinetics similar to that of cells expressing no CaM. This system offers a unique opportunity to analyze CaM structure-function relationships in vivo without the use of pharmacological inhibitors and to analyze the function of wild type and mutated CaM in modulating the activity of different target systems without interference of endogenous CaM.  相似文献   

10.
We have focused on activation mechanisms of calcium/calmodulin-dependent protein kinase (CaM) kinase I in the hippocampal neurons and compared them with that of CaM kinase IV. Increased activation of CaM kinase I occurred by stimulation with glutamate and depolarization in cultured rat hippocampal neurons. Similar to CaM kinases II and IV, CaM kinase I was essentially activated by stimulation with the NMDA receptor. Although both CaM kinases I and IV seem to be activated by CaM kinase kinase, the activation of CaM kinase I was persistent during stimulation with glutamate in contrast to a transient activation of CaM kinase IV. In addition, CaM kinase I was activated in a lower concentration of glutamate than that of CaM kinase IV. Depolarization-induced activation of CaM kinase I was also evident in the cultured neurons and was largely blocked by nifedipine. In the experiment with 32P-labeled cells, phosphorylation of CaM kinase I was stimulated by glutamate treatment and depolarization. The glutamate- and depolarization-induced phosphorylation was inhibited by the NMDA receptor antagonist and nifedipine, respectively. These results suggest that, although CaM kinases I and IV are activated by the NMDA receptor and depolarization stimulation, these kinase activities are differently regulated in the hippocampal neurons.  相似文献   

11.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   

12.
Calmodulin (CaM) binds to the cardiac ryanodine receptor Ca2+ release channel (RyR2) with high affinity and may act as a regulatory channel subunit. Here we determine the role of CaM Met residues in the productive association of CaM with RyR2, as assessed via determinations of [3H]ryanodine and [35S]CaM binding to cardiac muscle sarcoplasmic reticulum (SR) vesicles. Oxidation of all nine CaM Met residues abolished the productive association of CaM with RyR2. Substitution of the COOH-terminal Mets of CaM with Leu decreased the extent of CaM inhibition of cardiac SR (CSR) vesicle [3H]ryanodine binding. In contrast, replacing the NH2-terminal Met of CaM with Leu increased the concentration of CaM required to inhibit CSR [3H]ryanodine binding but did not alter the extent of inhibition. Site-specific substitution of individual CaM Met residues with Gln demonstrated that Met124 was required for both high-affinity CaM binding to RyR2 and for maximal CaM inhibition. These results thus identify a Met residue critical for the productive association of CaM with RyR2 channels.  相似文献   

13.
Cell proliferation is accompanied with changing levels of intracellular calmodulin (CaM) and its activation.Prior data from synchronized cell population could not actually stand for various CaM levels in different phases of cell cycle.Here,based upon quantitative measurement of fluorescence in individual cells,a method was developed to investigate intracellular total CaM and Ca^2 -activated CaM contents. Intensity of CaM immunoflurescence gave total CaM level,and Ca^2 -activated CaM was measured by fluorescence intensity of CaM antagonist trifluoperazine (TFP).In mouse erythroleukemia (MEL) cells,total CaM level increased from G1 through S to G2M,reaching a maximum of 2-fold increase,then reduced to half amount after cell division.Meanwhile,Ca^2 -activated CaM also in creased through the cell cycle(G1,S,G2M).Increasing observed in G1 meant that the entry of cells from G1 into S phase may require CaM accumulation,and,equally or even more important,Ca^2 -dependent activation of CaM.Ca^2 -activated CaM decreased after cell division.The results suggested that CaM gene expression and C^2 -modulated CaM activation act synergistically to accomplish the cell cycle progression.  相似文献   

14.
15.
Mal TK  Skrynnikov NR  Yap KL  Kay LE  Ikura M 《Biochemistry》2002,41(43):12899-12906
Calmodulin-regulated serine/threonine kinases (CaM kinases) play crucial roles in Ca2+-dependent signaling transduction pathways in eukaryotes. Despite having a similar overall molecular architecture of catalytic and regulatory domains, CaM kinases employ different binding modes for Ca2+/CaM recruitment which is required for their activation. Here we present a residual dipolar coupling (RDC)-based NMR approach to characterizing the molecular recognition of CaM with five different CaM kinases. Our analyses indicate that CaM kinase I and likely IV use the same CaM binding mode as myosin light chain kinase (1-14 motif), distinct from those of CaM kinase II (1-10 motif) and CaM kinase kinase (1-16- motif). This NMR approach provides an efficient experimental guide for homology modeling and structural characterization of CaM-target complexes.  相似文献   

16.
Autophosphorylation of alpha-Ca(2+)/calmodulin-dependent protein kinase II (CaM kinase II) at Thr(286) results in calmodulin (CaM) trapping, a >10,000-fold decrease in the dissociation rate of CaM from the enzyme. Here we present the first site-directed mutagenesis study on the dissociation of the high affinity complex between CaM and full-length CaM kinase II. We measured dissociation kinetics of CaM and CaM kinase II proteins by using a fluorescently modified CaM that is sensitive to binding to target proteins. In low [Ca(2+)], the phosphorylated mutant kinase F293A and the CaM mutant E120A/M124A exhibited deficient trapping compared with wild-type. In high [Ca(2+)], the CaM mutations E120A, M124A, and E120A/M124A and the CaM kinase II mutations F293A, F293E, N294A, N294P, and R297E increased dissociation rate constants by factors ranging from 2.3 to 116. We have also identified residues in CaM and CaM kinase II that interact in the trapped state by mutant cycle-based analysis, which suggests that interactions between Phe(293) in the kinase and Glu(120) and Met(124) in CaM specifically stabilize the trapped CaM-CaM kinase II complex. Our studies further show that Phe(293) and Asn(294) in CaM kinase II play dual roles, because they likely destabilize the low affinity state of CaM complexed to unphosphorylated kinase but stabilize the trapped state of CaM bound to phosphorylated kinase.  相似文献   

17.
Calmodulin (CaM) binds in a Ca2+-dependent manner to the intracellular C-terminal domains of most group III metabotropic glutamate receptors (mGluRs). Here we combined mutational and biophysical approaches to define the structural basis of CaM binding to mGluR 7A. Ca2+/CaM was found to interact with mGluR 7A primarily via its C-lobe at a 1:1 CaM:C-tail stoichiometry. Pulldown experiments with mutant CaM and mGluR 7A C-tail constructs and high resolution NMR with peptides corresponding to the CaM binding region of mGluR 7A allowed us to define hydrophobic and ionic interactions required for Ca2+/CaM binding and identified a 1-8-14 CaM-binding motif. The Ca2+/CaM.mGluR 7A peptide complex displays a classical wraparound structure that closely resembles that formed by Ca2+/CaM upon binding to smooth muscle myosin light chain kinase. Our data provide insight into how Ca2+/CaM regulates group III mGluR signaling via competition with intracellular proteins for receptor-binding sites.  相似文献   

18.
The effector domain (ED) of MARCKS proteins can associate with calmodulin (CaM) as well as with phospholipids. It is not clear, however, whether a complex between MARCKS proteins and CaM can form at the surface of phospholipid membranes or whether CaM and membranes compete for ED binding. Using two-mode waveguide spectroscopy, we have investigated how CaM regulates the association of MARCKS-related protein (MRP) with planar supported phospholipid bilayer membranes. Bringing a solution containing CaM into contact with membranes on which MRP had previously been deposited results in low-affinity binding of CaM to MRP. A preformed, high-affinity CaM MRP complex in the aqueous phase binds much more slowly than pure MRP to membranes. Similar observations were made when a peptide corresponding to the ED of MRP was used instead of MRP. Hence CaM cannot form a stable complex with MRP once the latter is bound at the membrane surface. CaM can, however, strongly retard the association of MRP with lipid membranes. The most likely interpretation of these results is that CaM and the phospholipid membrane share the same binding region at the ED and that the ED is forced by membrane binding to adopt a conformation unfavorable for CaM binding.  相似文献   

19.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   

20.
Genetically engineered calmodulins differentially activate target enzymes   总被引:9,自引:0,他引:9  
Three mutant calmodulin (CaM) genes together with the normal chicken CaM cDNA have been expressed in bacteria for the purpose of determining structure/function relationships in CaM. The mutant CaM genes were generated by in vitro recombination between a chicken CaM cDNA and a processed pseudogene that encodes a full-length CaM but with 19 amino acid substitutions as compared to authentic vertebrate CaM. The calmodulin-like (CaML) proteins derived from the pseudogene are called CaML19, CaML16, and CaML3 and contain 19, 16, and 3 amino acid substitutions, respectively. CaML3 is functionally identical to CaM by all criteria tested. The functional characteristics of CaML16 and CaML19 are also indistinguishable yet quite different from normal CaM. CaML19 and CaML16 will maximally activate myosin light chain kinase but will only half-maximally activate calcineurin and CaM-dependent multiprotein kinase. In addition, CaML16 and CaML19 do not activate phosphorylase kinase. The differential activation of these enzymes does not result from the loss of Ca2+-binding sites, since CaML16 binds four Ca2+ with affinity similar to CaM or CaM23. It is more likely that the functional characteristics of the mutant proteins result from an altered tertiary structure, since the Ca2+-dependent enhancement of tyrosine fluorescence and limited proteolysis pattern of CaML16 are different from that of CaM. The data demonstrate that the nature of the interaction of CaM with myosin light chain kinase is different from its interaction with calcineurin, CaM-dependent multiprotein kinase, and phosphorylase kinase and may involve different functional domains in CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号