首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

2.
The proximate and ultimate explanations for behavioural syndromes (correlated behaviours – a population trait) are poorly understood, and the evolution of behavioural types (configuration of behaviours – an individual trait) has been rarely studied. We investigated population divergence in behavioural syndromes and types using individually reared, completely predator‐ or conspecific‐naïve adult nine‐spined sticklebacks (Pungitius pungitius) from two marine and two predatory fish free, isolated pond populations. We found little evidence for the existence of behavioural syndromes, but population divergence in behavioural types was profound: individuals from ponds were quicker in feeding, bolder and more aggressive than individuals from marine environments. Our data reject the hypothesis that behavioural syndromes exist as a result of genetic correlations between behavioural traits, and support the contention that different behavioural types can be predominant in populations differing in predation pressure, most probably as a result of repeated independent evolution of separate behavioural traits.  相似文献   

3.
When studying animal behavior, it is often necessary to examine traits as a package, rather than as isolated units. Evidence suggests that individuals behave in a consistent manner across different contexts or over time; that is, behavioral syndromes. We compared locomotor activity levels and mating success between beetles derived from two regimes artificially selected for the duration of death‐feigning behavior in the adzuki bean beetle, Callosobruchus chinensis. The two selection regimes comprised strains with higher (L) and lower (S) intensity (frequency and duration) of death‐feigning behavior, respectively. We found that S strains had higher activity levels than L strains for both sexes, i.e., there is a negative genetic correlation between death feigning and activity. In addition, we found that S strains had higher mating success than L strains, presumably due to higher activity, in males but not in females. We thus demonstrate that death feigning is genetically correlated to mating behavior in males but not females in this species, suggesting that behavioral correlations may not always reflect in the same way in both sexes.  相似文献   

4.
Aggression is often positively correlated with other behavioural traits such as boldness and activity levels. Comparisons across populations can help to determine factors that promote the evolution of such traits. We quantified these behaviours by testing the responses of wild-caught poeciliid fish, Brachyrhaphis episcopi, to mirror image stimuli. This species occurs in populations that experience either high or low levels of predation pressure. Previous studies have shown that B. episcopi from low predation environments are less bold than those that occur with many predators. We therefore predicted that fish from high predation populations would be more aggressive and more active than fish from low predation populations. However, we found the opposite - low predation fish approached a mirror and a novel object more frequently than high predation fish suggesting that ‘boldness’ and aggression were higher in low predation populations, and that population-level boldness measures may vary depending on context. When tested individually, low predation fish inspected their mirror image more frequently. Females, but not males, from low predation sites were also more aggressive towards their mirror image. Variation in female aggression may be driven by a trade-off between food availability and predation risk. This suggests that the relationship between aggression and boldness has been shaped by adaptation to environmental conditions, and not genetic constraints.  相似文献   

5.
When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high‐ and low‐predation environments that were reared under native and non‐native environmental conditions. Both high‐ and low‐predation fish exhibited increased behavioural variance when reared under non‐native vs. native environmental conditions, and rearing in the non‐native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments.  相似文献   

6.
We studied genetic variation in fly mating signals and mate choice in crosses within and between inbred strains of Drosophila montana. Male songs and the cuticular hydrocarbons of both sexes as well as some of the flies’ behavioural traits differed significantly between strains. This did not, however, cause sexual isolation between strains. In fact, courtship was shorter if the female was courted by a male of a foreign strain than when courted by their own male. Heterosis was found for courtship duration and the carrier frequency of male song. Diallel analysis of male song revealed additive genetic variation in four out of the five traits studied. Two traits showed dominance variation and one of these, carrier frequency, expressed unidirectional dominance with alleles for higher carrier frequency being dominant. Direction of dominance in carrier frequency was the same as the direction of sexual selection exercised by D. montana females on this trait, which suggests that sexual selection could be a driving force in the evolution of song towards a higher carrier frequency.  相似文献   

7.
Population density can play a vital role in determining investment in reproductive behaviours and morphologies of invertebrates. Males reared in high-density environments, where competition is high but difficulties in locating mates are low, may invest more in reproductive structures associated with sperm competition such as testes, at the expense of those traits associated with mate location, such as antennae. In species where females advertise for mates, such as most moths, a high-density environment may also lead to a reduction in pheromonal signalling (calling) length and frequency as a result of high mate abundance. While such responses have been shown at the phenotypically plastic level in moths, heritable evolutionary adaptations have seldom been tested, and studies of how population density influences pheromone signalling strategies are scarce. Here we use behavioural assays and scanning electron microscopic measurements to test whether larval population density influences, at the genetic level, the ability of males to locate females and male investment into antennal morphology, in addition to its effect on the frequency and duration of female calling. We used two replicated populations of the Indian meal moth Plodia interpunctella that had experimentally evolved under high or low population densities for 35 generations. We found no significant divergence in antennal morphology or mate acquisition behaviours between the two density populations. These findings suggest that although population density has the ability to create plastic changes in both morphological and behavioural traits, this factor alone is unlikely to be causing evolutionary change in male and female signalling in this species.  相似文献   

8.
Individuals frequently behave in a consistent manner across time or in different situations. We examined the repeatability of duration of death-feigning anti-predator behaviour when attacked, and then carried out artificial selection for duration to calculate its heritability and examine correlated responses to selection in activity levels, in the confused flour beetle, Tribolium confusum. Three replicates of two strains were established by artificial selection for more than 17 generations: S strains exhibited shorter duration and lower frequency of death feigning while L strains exhibited longer duration and higher frequency of death feigning. Duration of death feigning clearly responded to selection, and significant value of realized heritability was detected in all replicates of the two strains. Examination of locomotor activity levels over a constant period showed that S strains had higher locomotor activity levels than L strains. No significant differences between the sexes were observed. Our study thus demonstrates heritability of death feigning and the existence of a negative genetic correlation between intensity of death feigning and activity level.  相似文献   

9.
Bell AM  Sih A 《Ecology letters》2007,10(9):828-834
A perplexing new question that has emerged from the recent surge of interest in behavioural syndromes or animal personalities is – why do individual animals behave consistently when behavioural flexibility is advantageous? If individuals have a tendency to be generally aggressive, then a relatively aggressive individual might be overly aggressive towards offspring, mates or even predators. Despite these costs, studies in several taxa have shown that individuals that are more aggressive are also relatively bold. However, the behavioural correlation is not universal; even within a species, population comparisons have shown that boldness and aggressiveness are correlated in populations of sticklebacks that are under strong predation pressure, but not in low predation populations. Here, we provide the first demonstration that an environmental factor can induce a correlation between boldness and aggressiveness. Boldness under predation risk and aggressiveness towards a conspecific were measured before and after sticklebacks were exposed to predation by trout, which predated half the sticklebacks. Exposure to predation generated the boldness–aggressiveness behavioural correlation. The behavioural correlation was produced by both selection by predators and behavioural plasticity. These results support the hypothesis that certain correlations between behaviours might be adaptive in some environments.  相似文献   

10.
A broad range of animals use visual signals to assess potential mates, and the theory of sensory exploitation suggests variation in visual systems drives mate preference variation due to sensory bias. Trinidadian guppies (Poecilia reticulata), a classic system for studies of the evolution of female mate choice, provide a unique opportunity to test this theory by looking for covariation in visual tuning, light environment and mate preferences. Female preference co‐evolves with male coloration, such that guppy females from ‘low‐predation’ environments have stronger preferences for males with more orange/red coloration than do females from ‘high‐predation’ environments. Here, we show that colour vision also varies across populations, with ‘low’‐predation guppies investing more of their colour vision to detect red/orange coloration. In independently colonized watersheds, guppies expressed higher levels of both LWS‐1 and LWS‐3 (the most abundant LWS opsins) in ‘low‐predation’ populations than ‘high‐predation’ populations at a time that corresponds to differences in cone cell abundance. We also observed that the frequency of a coding polymorphism differed between high‐ and low‐predation populations. Together, this shows that the variation underlying preference could be explained by simple changes in expression and coding of opsins, providing important candidate genes to investigate the genetic basis of female preference variation in this model system.  相似文献   

11.
In animal populations, as in humans, behavioural differences between individuals that are consistent over time and across contexts are considered to reflect personality, and suites of correlated behaviours expressed by individuals are known as behavioural syndromes. Lifelong stability of behavioural syndromes is often assumed, either implicitly or explicitly. Here, we use a quantitative genetic approach to study the developmental stability of a behavioural syndrome in a wild population of blue tits. We find that a behavioural syndrome formed by a strong genetic correlation of two personality traits in nestlings disappears in adults, and we demonstrate that genotype–age interaction is the likely mechanism underlying this change during development. A behavioural syndrome may hence change during organismal development, even when personality traits seem to be strongly physiologically or functionally linked in one age group. We outline how such developmental plasticity has important ramifications for understanding the mechanistic basis as well as the evolutionary consequences of behavioural syndromes.  相似文献   

12.
The aims of this study were to test whether the metabolism, behavioural traits, growth and survival under predation of a fish species phenotypically changed under predation threat with the particular emphasis on whether short-time predator exposure would amplify the relationships between metabolic rate and behavioural traits and their fitness consequences (growth and survival). We found that Chinese bream under predation threat for 20 days exhibited a lower specific growth rate (SGR), feeding rate (FR) and feeding efficiency (FE) but a higher standard metabolic rate (SMR) and survival when encountering predators compared to the bream in the no-predator group. Both activity and boldness showed no correlation to SMR in the no-predator group, while it was vice versa in the predator group according to Pearson correlation. It thus demonstrated that short-time predator exposure can mediate the relationships between metabolism and behavioural traits, suggesting that predation may play an important evolutionary role in modifying intraspecific behavioural differences via metabolism. However, no significant effect of predator treatment acted on relationships between behaviour traits and SMR according to ANCOVA, which possibly due to the small sample size of this study. Additionally, the SMR of both groups was positively correlated with survival under predation, whereas the relationships between SMR and fitness cost such as growth and survival are rather complicated and need further investigation.  相似文献   

13.
In theory, survival rates and consequent population status might be predictable from instantaneous behavioural measures of how animals prioritize foraging vs. avoiding predation. We show, for the 30 most common small bird species ringed in the UK, that one quarter respond to higher predation risk as if it is mass-dependent and lose mass. Half respond to predation risk as if it only interrupts their foraging and gain mass thus avoiding consequent increased starvation risk from reduced foraging time. These mass responses to higher predation risk are correlated with population and conservation status both within and between species (and independently of foraging habitat, foraging guild, sociality index and size) over the last 30 years in Britain, with mass loss being associated with declining populations and mass gain with increasing populations. If individuals show an interrupted foraging response to higher predation risk, they are likely to be experiencing a high quality foraging environment that should lead to higher survival. Whereas individuals that show a mass-dependent foraging response are likely to be in lower quality foraging environments, leading to relatively lower survival.  相似文献   

14.
Uncovering mate choice and factors that lead to the choice are very important to understanding sexual selection in evolutionary change. Cicadas are known for their loud sounds produced by males using the timbals. However, males in certain cicada species emit 2 kinds of sounds using respectively timbals and stridulatory organs, and females may produce their own sounds to respond to males. What has never been considered is the mate choice in such cicada species. Here, we investigate the sexual selection and potential impact of predation pressure on mate choice in the cicada Subpsaltria yangi Chen. It possesses stridulatory sound-producing organs in both sexes in addition to the timbals in males. Results show that males producing calling songs with shorter timbal–stridulatory sound intervals and a higher call rate achieved greater mating success. No morphological traits were found to be correlated with mating success in both sexes, suggesting neither males nor females display mate preference for the opposite sex based on morphological traits. Males do not discriminate among responding females during mate searching, which may be due to the high energy costs associated with their unusual mate-seeking activity and the male-biased predation pressure. Females generally mate once but a minority of them re-mated after oviposition which, combined with the desirable acoustic traits of males, suggest females may maximize their reproductive success by choosing a high-quality male in the first place. This study contributes to our understanding mechanisms of sexual selection in cicadas and other insects suffering selective pressure from predators.  相似文献   

15.
Environmental effects on mating system expression are central to understanding mating system evolution in nature. Here, I report the results from a quantitative‐genetic experiment aimed at understanding the role of predation risk in the expression and evolution of life‐history and mating‐system traits in a hermaphroditic freshwater snail (Physa acuta). I reared 30 full‐sib families in four environments that factorially contrast predation risk and mate availability and measured age/size at first reproduction, growth rate, a morphological defense, and the early survival of outcrossed/selfed eggs that were laid under predator/no‐predator conditions. I evaluated the genetic basis of trade‐offs among traits and the stability of the G matrix across environments. Mating reduced growth while predation risk increased growth, but the effects of mating were weaker for predator‐induced snails and the effects of predation risk were weaker for snails without mates. Predation risk reduced the amount of time that individuals waited before self‐fertilizing and reduced inbreeding depression in the offspring. There was a positive among‐family relationship between the amount of time that individuals delayed selfing under predation risk and the magnitude of inbreeding depression. These results highlight several potential roles of enemies in mating‐system expression and evolution.  相似文献   

16.
Intraspecific trait variation, including animal personalities and behavioural syndromes, affects how individual animals and populations interact with their environment. Within-species behavioural variation is widespread across animal taxa, which has substantial and unexplored implications for the ecological and evolutionary processes of animals. Accordingly, we sought to investigate individual behavioural characteristics in several populations of a desert-dwelling fish, the Australian desert goby (Chlamydogobius eremius). We reared first generation offspring in a common garden to compare non-ontogenic divergence in behavioural phenotypes between genetically interconnected populations from contrasting habitats (isolated groundwater springs versus hydrologically variable river waterholes). Despite the genetic connectedness of populations, fish had divergent bold-exploratory traits associated with their source habitat. This demonstrates divergence in risk-taking traits as a rapid phenotypic response to ecological pressures in arid aquatic habitats: neophilia may be suppressed by increased predation pressure and elevated by high intraspecific competition. Correlations between personality traits also differed between spring and river fish. River populations showed correlations between dispersal and novel environment behaviours, revealing an adaptive behavioural syndrome (related to dispersal and exploration) that was not found in spring populations. This illustrates the adaptive significance of heritable behavioural variation within and between populations, and their importance to animals persisting across contrasting habitats.  相似文献   

17.
A key question in speciation research is how ecological and sexual divergence arise and interact. We tested the hypothesis that mate choice causes local adaptation and ecological divergence using the rationale that the performance~signal trait relationship should parallel the attractiveness~signal trait relationship. We used female fecundity as a measure of ecological performance. We used a species in the Enchenopa binotata treehopper complex, wherein speciation involves adaptation to novel environments and divergence in sexual communication. We used a full‐sibling, split‐family rearing design to estimate genetic correlations (rG) between fecundity and signal traits, and compared those relationships against population‐level mate preferences for the signal traits. Animal model estimates for rG between female fecundity and male signal traits overlapped zero—rejecting the hypothesis—but could reflect sample size limitations. The magnitude of rG correlated with the strength of the mate preferences for the corresponding signal traits, especially for signal frequency, which has the strongest mate preference and the most divergence in the complex. However, signal frequencies favored by the population‐level mate preference are not associated with high fecundity. Therefore, mate preferences do not appear to have been selected to favor high‐performance genotypes. Our findings suggest that ecological and sexual divergence may arise separately, but reinforce each other, during speciation.  相似文献   

18.
Animals often show behavioural plasticity with respect to predation risk but also show behavioural syndromes in terms of consistency of responses to different stimuli. We examine these features in the freshwater pearl mussel. These bivalves often aggregate presumably to reduce predation risk to each individual. Predation risk, however, will be higher in the presence of predator cues. Here we use dimming light, vibration and touch as novel stimuli to examine the trade-off between motivation to feed and motivation to avoid predation. We present two experiments that each use three sequential novel stimuli to cause the mussels to close their valves and hence cease feeding. We find that mussels within a group showed shorter closure times than solitary mussels, consistent with decreased vulnerability to predation in group-living individuals. Mussels exposed to the odour of a predatory crayfish showed longer closures than control mussels, highlighting the predator assessment abilities of this species. However, individuals showed significant consistency in their closure responses across the trial series, in line with behavioural syndrome theory. Our results show that bivalves trade-off feeding and predator avoidance according to predation risk but the degree to which this is achieved is constrained by behavioural consistency.  相似文献   

19.
Larvae of many trophically-transmitted parasites alter the behaviour of their intermediate host in ways that increase their probability of transmission to the next host in their life cycle. Before reaching a stage that is infective to the next host, parasite larvae may develop through several larval stages in the intermediate host that are not infective to the definitive host. Early predation at these stages results in parasite death, and it has recently been shown that non-infective larvae of some helminths decrease such risk by enhancing the anti-predator defences of the host, including decreased activity and increased sheltering. However, these behavioural changes may divert infected hosts from an optimal balance between survival and foraging (either seeking food or a mate). In this study, this hypothesis was tested using the intermediate host of the acanthocephalan parasite Pomphorhynchus laevis, the freshwater amphipod Gammarus pulex. We compared activity, refuge use, food foraging and food intake of hosts experimentally infected with the non-infective stage (acanthella), with that of uninfected gammarids. Behavioural assays were conducted in four situations varying in predation risk and in food accessibility. Acanthella-infected amphipods showed an increase in refuge use and a general reduction in activity and food intake. There was no effect of parasite intensity on these traits. Uninfected individuals showed plastic responses to water-borne cues from fish by adjusting refuge use, activity and food intake. They also foraged more when the food was placed outside the refuge. At the intra-individual level, refuge use and food intake were positively correlated in infected gammarids only. Overall, our findings suggest that uninfected gammarids exhibit risk-sensitive behaviour including increased food intake under predation risk, whereas gammarids infected with the non-infective larvae of P. laevis exhibit a lower motivation to feed, irrespective of predation risk and food accessibility.  相似文献   

20.
Dispersal syndromes describe the patterns of covariation of morphological, behavioural, and life-history traits associated with dispersal. Studying dispersal syndromes is critical to understanding the demographic and genetic consequences of movements. Among studies describing the association of life-history traits with dispersal, there is anecdotal evidence suggesting that dispersal syndromes can vary with age. Recent theory also suggests that dispersive and philopatric individuals might have different age-specific reproductive efforts. In a wild population of the common lizard (Zootoca vivipara), we investigated whether dispersive and philopatric individuals have different age-specific reproductive effort, survival, offspring body condition, and offspring sex ratio. Consistent with theoretical predictions, we found that young dispersive females have a higher reproductive effort than young philopatric females. Our results also suggest that the early high investment in reproduction of dispersive females trades-off with an earlier onset of senescence than in philopatric females. We further found that young dispersive females produce smaller offspring in lower body condition than do young philopatric females. Overall, our results provide empirical evidence that dispersive and philopatric individuals have different age-specific life-history traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号