首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tarsiers are small nocturnal primates with a long history of fuelling debate on the origin and evolution of anthropoid primates. Recently, the discovery of M and L opsin genes in two sister species, Tarsius bancanus (Bornean tarsier) and Tarsius syrichta (Philippine tarsier), respectively, was interpreted as evidence of an ancestral long-to-middle (L/M) opsin polymorphism, which, in turn, suggested a diurnal or cathemeral (arrhythmic) activity pattern. This view is compatible with the hypothesis that stem tarsiers were diurnal; however, a reversion to nocturnality during the Middle Eocene, as evidenced by hyper-enlarged orbits, predates the divergence of T. bancanus and T. syrichta in the Late Miocene. Taken together, these findings suggest that some nocturnal tarsiers possessed high-acuity trichromatic vision, a concept that challenges prevailing views on the adaptive origins of the anthropoid visual system. It is, therefore, important to explore the plausibility and antiquity of trichromatic vision in the genus Tarsius. Here, we show that Sulawesi tarsiers (Tarsius tarsier), a phylogenetic out-group of Philippine and Bornean tarsiers, have an L opsin gene that is more similar to the L opsin gene of T. syrichta than to the M opsin gene of T. bancanus in non-synonymous nucleotide sequence. This result suggests that an L/M opsin polymorphism is the ancestral character state of crown tarsiers and raises the possibility that many hallmarks of the anthropoid visual system evolved under dim (mesopic) light conditions. This interpretation challenges the persistent nocturnal–diurnal dichotomy that has long informed debate on the origin of anthropoid primates.  相似文献   

2.
We experimentally investigated the influence of developmental plasticity of ultraviolet (UV) visual sensitivity on predation efficiency of the larval smooth newt, Lissotriton vulgaris. We quantified expression of SWS1 opsin gene (UV-sensitive protein of photoreceptor cells) in the retinas of individuals who had developed in the presence (UV+) or absence (UV−) of UV light (developmental treatments), and tested their predation efficiency under UV+ and UV− light (testing treatments). We found that both SWS1 opsin expression and predation efficiency were significantly reduced in the UV− developmental group. Larvae in the UV− testing environment displayed consistently lower predation efficiency regardless of their developmental treatment. These results prove for the first time, we believe, functional UV vision and developmental plasticity of UV sensitivity in an amphibian at the larval stage. They also demonstrate that UV wavelengths enhance predation efficiency and suggest that the magnitude of the behavioural response depends on retinal properties induced by the developmental lighting environment.  相似文献   

3.
4.
In the first molecular study of ostracod (Crustacea) vision, we present partial cDNA sequences of ostracod visual pigment genes (opsins). We found strong support for differential expression of opsins in ostracod median and compound eyes and suggest that photoreceptor specific expression may be a general phenomenon in organisms with multiple receptors. We infer that eye-specific expression predates the divergence of the two species examined, Skogsbergia lerneri and Vargula hilgendorfii, because eye-specific opsin orthologs are present in both species. We found multiple opsin loci in ostracods, estimating that at least eight are present in Skogsbergia lerneri. All opsins from both ostracod species examined are more closely related to each other than to any other known opsin sequences. Because we find no evidence for gene conversion or alternative splicing, we suggest the occurrence of many recent gene duplications. Why ostracods may have retained multiple recent opsin gene duplicates is unknown, but we discuss several possible hypotheses.[Reviewing Editor: Martin Kreitman]  相似文献   

5.
Colour vision is mediated by the expression of different visual pigments in photoreceptors of the vertebrate retina. Each visual pigment is a complex of a protein (opsin) and a vitamin A chromophore; alterations to either component affects visual pigment absorbance and, potentially, the visual capabilities of an animal. Many species of fish undergo changes in opsin expression during retinal development. In the case of salmonid fishes the single cone photoreceptors undergo a switch in opsin expression from SWS1 (ultraviolet sensitive) to SWS2 (blue-light sensitive) starting at the yolk-sac alevin stage, around the time when they first experience light. Whether light may initiate this event or produce a plastic response in the various photoreceptors is unknown. In this study, Chinook salmon Oncorhynchus tshawytscha were exposed to light from the embryonic (5 days prior to hatching) into the yolk sac alevin (25 days post hatching) stage and the spectral phenotype of photoreceptors assessed with respect to that of unexposed controls by in situ hybridization with opsin riboprobes. Light exposure did not change the spectral phenotype of photoreceptors, their overall morphology or spatial arrangement. These results concur with those from a variety of fish species and suggest that plasticity in photoreceptor spectral phenotype via changes in opsin expression may not be a widespread occurrence among teleosts.  相似文献   

6.
Circadian regulation has a profound adaptive meaning in timing the best performance of biological functions in a cyclic niche. However, in cave-dwelling animals (troglobitic), a lack of photic cyclic environment may represent a disadvantage for persistence of circadian rhythms. There are different populations of cave-dwelling fish Astyanax mexicanus in caves of the Sierra El Abra, Mexico, with different evolutive history. In the present work, we report that fish collected from El Sótano la Tinaja show circadian rhythms of swimming activity in laboratory conditions. Rhythms observed in some of the organisms entrain to either continuous light–dark cycles or discrete skeleton photoperiods tested. Our results indicate that circadian rhythm of swimming activity and their ability to entrain in discrete and continuous photoperiods persist in some organisms that might represent one of the oldest populations of cave-dwelling A. mexicanus in the Sierra El Abra.  相似文献   

7.
Hagfish eyes are markedly basic compared to the eyes of other vertebrates, lacking a pigmented epithelium, a lens and a retinal architecture built of three cell layers: the photoreceptors, interneurons and ganglion cells. Concomitant with hagfish belonging to the earliest-branching vertebrate group (the jawless Agnathans), this lack of derived characters has prompted competing interpretations that hagfish eyes represent either a transitional form in the early evolution of vertebrate vision, or a regression from a previously elaborate organ. Here, we show the hagfish retina is not extensively degenerating during its ontogeny, but instead grows throughout life via a recognizable PAX6+ ciliary marginal zone. The retina has a distinct layer of photoreceptor cells that appear to homogeneously express a single opsin of the RH1 rod opsin class. The epithelium that encompasses these photoreceptors is striking because it lacks the melanin pigment that is universally associated with animal vision; notwithstanding, we suggest this epithelium is a homologue of gnathosome retinal pigment epithelium (RPE) based on its robust expression of RPE65 and its engulfment of photoreceptor outer segments. We infer that the hagfish retina is not entirely rudimentary in its wiring, despite lacking a morphologically distinct layer of interneurons: multiple populations of cells exist in the hagfish inner retina and subsets of these express markers of vertebrate retinal interneurons. Overall, these data clarify Agnathan retinal homologies, reveal characters that now appear to be ubiquitous across the eyes of vertebrates, and refine interpretations of early vertebrate visual system evolution.  相似文献   

8.
Theories of sexual and natural selection predict coevolution of visual perception with conspecific colour and/or the light environment animals occupy. One way to test these theories is to focus on the visual system, which can be achieved by studying the opsin-based visual pigments that mediate vision. Birds vary greatly in colour, but opsin gene coding sequences and associated visual pigment spectral sensitivities are known to be rather invariant across birds. Here, I studied expression of the four cone opsin genes (Lws, Rh2, Sws2 and Sws1) in 16 species of New World warblers (Parulidae). I found levels of opsin expression vary both across species and between the sexes. Across species, female, but not male Sws2 expression is associated with an index of sexual selection, plumage dichromatism. This fits predictions of classic sexual selection models, in which the sensory system changes in females, presumably impacting female preference, and co-evolves with male plumage. Expression of the opsins at the extremes of the light spectrum, Lws and Uvs, correlates with the inferred light environment occupied by the different species. Unlike opsin spectral tuning, regulation of opsin gene expression allows for fast adaptive evolution of the visual system in response to natural and sexual selection, and in particular, sex-specific selection pressures.  相似文献   

9.
The “four-eyed” fish Anableps anableps has numerous morphological adaptations that enable above and below-water vision. Here, as the first step in our efforts to identify molecular adaptations for aerial and aquatic vision in this species, we describe the A. anableps visual opsin repertoire. We used PCR, cloning, and sequencing to survey cDNA using unique primers designed to amplify eight sequences from five visual opsin gene subfamilies, SWS1, SWS2, RH1, RH2, and LWS. We also used Southern blotting to count opsin loci in genomic DNA digested with EcoR1 and BamH1. Phylogenetic analyses confirmed the identity of all opsin sequences and allowed us to map gene duplication and divergence events onto a tree of teleost fish. Each of the gene-specific primer sets produced an amplicon from cDNA, indicating that A. anableps possessed and expressed at least eight opsin genes. A second PCR-based survey of genomic and cDNA uncovered two additional LWS genes. Thus, A. anableps has at least ten visual opsins and all but one were expressed in the eyes of the single adult surveyed. Among these ten visual opsins, two have key site haplotypes not found in other fish. Of particular interest is the A. anableps-specific opsin in the LWS subfamily, S180γ, with a SHYAA five key site haplotype. Although A. anableps has a visual opsin gene repertoire similar to that found in other fishes in the suborder Cyprinodontoidei, the LWS opsin subfamily has two loci not found in close relatives, including one with a key site haplotype not found in any other fish species. A. anableps opsin sequence data will be used to design in situ probes allowing us to test the hypothesis that opsin gene expression differs in the distinct ventral and dorsal retinas found in this species.  相似文献   

10.
Inbreeding is common in flowering plants, but relatively few studies have examined its effects on interactions between plants and other organisms, such as herbivores and pathogens. In a recent paper, we documented effects of inbreeding depression on plant volatile signaling phenotypes, including elevated constitutive volatile emissions (and consequently greater herbivore recruitment to inbred plants) but reduced emission of key herbivore-induced volatiles that attract predatory and parasitic insects to damaged plants. While the effects of inbreeding on plant-insect interactions have been explored in only a few systems, even less is known about its effects on plant-pathogen interactions. Here we report the effects of inbreeding on horsenettle susceptibility to powdery mildew (Oidium neolycopersici), including more rapid onset of infection in inbred plants, particularly when plants were not previously damaged. These data suggest that inbreeding may increase plant susceptibility to pathogen infection and, therefore, may potentially facilitate pathogen establishment in natural populations.  相似文献   

11.
Mammalian retinae have rod photoreceptors for night vision and cone photoreceptors for daylight and colour vision. For colour discrimination, most mammals possess two cone populations with two visual pigments (opsins) that have absorption maxima at short wavelengths (blue or ultraviolet light) and long wavelengths (green or red light). Microchiropteran bats, which use echolocation to navigate and forage in complete darkness, have long been considered to have pure rod retinae. Here we use opsin immunohistochemistry to show that two phyllostomid microbats, Glossophaga soricina and Carollia perspicillata, possess a significant population of cones and express two cone opsins, a shortwave-sensitive (S) opsin and a longwave-sensitive (L) opsin. A substantial population of cones expresses S opsin exclusively, whereas the other cones mostly coexpress L and S opsin. S opsin gene analysis suggests ultraviolet (UV, wavelengths <400 nm) sensitivity, and corneal electroretinogram recordings reveal an elevated sensitivity to UV light which is mediated by an S cone visual pigment. Therefore bats have retained the ancestral UV tuning of the S cone pigment. We conclude that bats have the prerequisite for daylight vision, dichromatic colour vision, and UV vision. For bats, the UV-sensitive cones may be advantageous for visual orientation at twilight, predator avoidance, and detection of UV-reflecting flowers for those that feed on nectar.  相似文献   

12.
Spatial variation in lighting environments frequently leads to population variation in colour patterns, colour preferences and visual systems. Yet lighting conditions also vary diurnally, and many aspects of visual systems and behaviour vary over this time scale. Here, we use the bluefin killifish (Lucania goodei) to compare how diurnal variation and habitat variation (clear versus tannin-stained water) affect opsin expression and the preference to peck at different-coloured objects. Opsin expression was generally lowest at midnight and dawn, and highest at midday and dusk, and this diurnal variation was many times greater than variation between habitats. Pecking preference was affected by both diurnal and habitat variation but did not correlate with opsin expression. Rather, pecking preference matched lighting conditions, with higher preferences for blue at noon and for red at dawn/dusk, when these wavelengths are comparatively scarce. Similarly, blue pecking preference was higher in tannin-stained water where blue wavelengths are reduced. In conclusion, L. goodei exhibits strong diurnal cycles of opsin expression, but these are not tightly correlated with light intensity or colour. Temporally variable pecking preferences probably result from lighting environment rather than from opsin production. These results may have implications for the colour pattern diversity observed in these fish.  相似文献   

13.
Phenotypic plasticity plays an important role in adapting the visual capability of many animal species to changing sensory requirements. Such variability may be driven by developmental change or may result from environmental changes in light habitat, thereby improving performance in different photic environments. In this study, we examined inter‐ and intraspecific plasticity of visual sensitivities in seven damselfish species, part of the species‐rich and colourful fish fauna of the Great Barrier Reef in Australia. Our goal was to test whether the visual systems of damselfish were tuned to the prevailing light environment in different habitats and/or other aspects of their lifestyle. More specifically, we compared the opsin gene expression levels from individuals living in different photic habitats. We found that all species expressed rod opsin (RH1) used for dim‐light vision, and primarily three cone opsins (SWS1, RH2B and RH2A) used for colour vision. While RH1 levels changed exclusively following a diurnal cycle, cone opsin expression varied with depth in four of the seven species. Estimates of visual pigment performance imply that changes in opsin expression adjust visual sensitivities to the dominant photic regime. However, we also discovered that some species show a more stable opsin expression profile. Further, we found indication that seasonal changes, possibly linked to changes in the photic environment, might also trigger opsin expression. These findings suggest that plasticity in opsin gene expression of damselfish is highly species‐specific, possibly due to ecological differences in visual tasks or, alternatively, under phylogenetic constraints.  相似文献   

14.
Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.  相似文献   

15.
The nonrecombining Drosophila melanogaster Y chromosome is heterochromatic and has few genes. Despite these limitations, there remains ample opportunity for natural selection to act on the genes that are vital for male fertility and on Y factors that modulate gene expression elsewhere in the genome. Y chromosomes of many organisms have low levels of nucleotide variability, but a formal survey of D. melanogaster Y chromosome variation had yet to be performed. Here we surveyed Y-linked variation in six populations of D. melanogaster spread across the globe. We find surprisingly low levels of variability in African relative to Cosmopolitan (i.e., non-African) populations. While the low levels of Cosmopolitan Y chromosome polymorphism can be explained by the demographic histories of these populations, the staggeringly low polymorphism of African Y chromosomes cannot be explained by demographic history. An explanation that is entirely consistent with the data is that the Y chromosomes of Zimbabwe and Uganda populations have experienced recent selective sweeps. Interestingly, the Zimbabwe and Uganda Y chromosomes differ: in Zimbabwe, a European Y chromosome appears to have swept through the population.  相似文献   

16.
17.
18.
The sensory drive hypothesis predicts the correlated evolution of signaling traits and sensory perception in differing environments. For visual signals, adaptive divergence in both color signals and visual sensitivities between populations may contribute to reproductive isolation and promote speciation, but this has rarely been tested or shown in terrestrial species. We tested whether opsin protein expression differs between divergent lineages of the tawny dragon (Ctenophorus decresii) that differ in the presence/absence of an ultraviolet sexual signal. We measured the expression of four retinal cone opsin genes (SWS1, SWS2, RH2, and LWS) using droplet digital PCR. We show that gene expression between lineages does not differ significantly, including the UV wavelength sensitive SWS1. We discuss these results in the context of mounting evidence that visual sensitivities are highly conserved in terrestrial systems. Multiple competing requirements may constrain divergence of visual sensitivities in response to sexual signals. Instead, signal contrast could be increased via alternative mechanisms, such as background selection. Our results contribute to a growing understanding of the roles of visual ecology, phylogeny, and behavior on visual system evolution in reptiles.  相似文献   

19.
Long-term exposure to ultraviolet (UV) light generates substantial damage, and in mammals, visual sensitivity to UV is restricted to short-lived diurnal rodents and certain marsupials. In humans, the cornea and lens absorb all UV-A and most of the terrestrial UV-B radiation, preventing the reactive and damaging shorter wavelengths from reaching the retina. This is not the case in certain species of long-lived diurnal birds, which possess UV-sensitive (UVS) visual pigments, maximally sensitive below 400 nm. The Order Psittaciformes contains some of the longest lived bird species, and the two species examined so far have been shown to possess UVS pigments. The objective of this study was to investigate the prevalence of UVS pigments across long-lived parrots, macaws and cockatoos, and therefore assess whether they need to cope with the accumulated effects of exposure to UV-A and UV-B over a long period of time. Sequences from the SWS1 opsin gene revealed that all 14 species investigated possess a key substitution that has been shown to determine a UVS pigment. Furthermore, in vitro regeneration data, and lens transparency, corroborate the molecular findings of UV sensitivity. Our findings thus support the claim that the Psittaciformes are the only avian Order in which UVS pigments are ubiquitous, and indicate that these long-lived birds have UV sensitivity, despite the risks of photodamage.  相似文献   

20.
The guppy is known to exhibit remarkable interindividual variations in spectral sensitivity of middle to long wavelength-sensitive (M/LWS) cone photoreceptor cells. The guppy has four M/LWS-type opsin genes (LWS-1, LWS-2, LWS-3 and LWS-4) that are considered to be responsible for this sensory variation. However, the allelic variation of the opsin genes, particularly in terms of their absorption spectrum, has not been explored in wild populations. Thus, we examined nucleotide variations in the four M/LWS opsin genes as well as blue-sensitive SWS2-B and ultraviolet-sensitive SWS1 opsin genes for comparison and seven non-opsin nuclear loci as reference genes in 10 guppy populations from various light environments in Trinidad and Tobago. For the first time, we discovered a potential spectral variation (180 Ser/Ala) in LWS-1 that differed at an amino acid site known to affect the absorption spectra of opsins. Based on a coalescent simulation of the nucleotide variation of the reference genes, we showed that the interpopulation genetic differentiation of two opsin genes was significantly larger than the neutral expectation. Furthermore, this genetic differentiation was significantly related to differences in dissolved oxygen (DO) level, and it was not explained by the spatial distance between populations. The DO levels are correlated with eutrophication that possibly affects the color of aquatic environments. These results suggest that the population diversity of opsin genes is significantly driven by natural selection and that the guppy could adapt to various light environments through color vision changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号