首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, immunoproteomic analysis was utilized to systemically characterize global autoantibody profiles in autoimmune hepatitis (AIH). Sera from 21 patients with AIH and 15 healthy controls were analyzed for the antibody reactivity against the protein antigens of HepG2, a human hepatoma cell line. The lysates of HepG2 cells were separated by two-dimensional electrophoresis and then immunoblotted with each serum sample. Matrix-assisted laser desorption/ionization mass spectrometry or/and nanoelectrospray ionization MS/MS were then used to identify antigens, among which a bifunctional enzyme in mitochondrial, fumarate hydratase (FH), was further analyzed by ELISA using recombinant FH as a coating antigen. A total of 18 immunoreactive spots were identified as 13 proteins, 8 of which have not been reported in AIH. Immune reactivity to FH was detected in 66.67% of patients with AIH, 19.35% of patients with primary biliary cirrhosis (PBC), 12.31% of patients with chronic hepatitis B (CHB), 6.35% of patients with chronic hepatitis C (CHC), 11.32% of patients with systemic lupus erythematosus (SLE), and 3.57% of normal individuals. The differences of prevalence between AIH patients and healthy controls as well as other diseases were of statistical significance (P<0.001). These data demonstrate the serological heterogeneity in AIH and suggest the diversity of the mechanisms underlying AIH. FH, recognized mainly in AIH rather than in viral hepatitis and other autoimmune diseases, may have utility in improved diagnosis of AIH.  相似文献   

2.
3.
4.
Eukaryotic cell cycles are driven by a set of regulators that have undergone lineage-specific gene loss, duplication, or divergence in different taxa. It is not known to what extent these genomic processes contribute to differences in cell cycle regulatory programs and cell division mechanisms among different taxonomic groups. We have undertaken a genome-wide characterization of the cell cycle genes encoded by Chlamydomonas reinhardtii, a unicellular eukaryote that is part of the green algal/land plant clade. Although Chlamydomonas cells divide by a noncanonical mechanism termed multiple fission, the cell cycle regulatory proteins from Chlamydomonas are remarkably similar to those found in higher plants and metazoans, including the proteins of the RB-E2F pathway that are absent in the fungal kingdom. Unlike in higher plants and vertebrates where cell cycle regulatory genes have undergone extensive duplication, most of the cell cycle regulators in Chlamydomonas have not. The relatively small number of cell cycle genes and growing molecular genetic toolkit position Chlamydomonas to become an important model for higher plant and metazoan cell cycles.  相似文献   

5.
6.
7.
8.
9.
10.
We report a robust method for studying en masse changes in translation using cDNA arrays. The relative distribution of messenger RNAs (mRNAs) along polysome gradients was monitored by performing cDNA array analysis of each gradient fraction and quantifying the mRNA translational status by regression analysis. Using this strategy to study human carcinoma cells exposed to short-wavelength ultraviolet light (UVC), we identified a subset of 17 translationally induced mRNAs and a subset of 69 translationally repressed mRNAs following UVC irradiation. We describe an effective approach for globally investigating changes in protein biosynthesis.  相似文献   

11.
12.
13.
Polymyositis is an autoimmune, inflammatory disease affecting human skeletal muscle. In the presence of concomitant vasculitis in the skin, the term dermatomyositis is used. In contrast, systemic lupus erythematosus (SLE) is a multisystem disease in which involvement of the skin, kidneys, joints, brain, and other organs may be found. The clinical manifestations vary according to the organ/system involved. It is clinical and therapeutic importance to define which organ/system is involved during the course of the disease. We approached this problem by studying the specificity of autoantibodies that are generated in patients with SLE and polymyositis/dermatomyositis. Among such antibodies are those directed against nuclear components including a variety of ribonucleoprotein (RNP) complexes. We have utilized mammalian nuclear preparations enriched with RNP particles as the antigenic source for immunoblotting studies to identify specific antigenic polypeptides. In the study reported here, sera from five groups of patients were examined: 10 patients with dermatomyositis/polymyositis; six patients with SLE and myositis; 12 lupus patients with cerebral and/or renal disease; eight patients with SLE but no myositis, renal, or cerebral disease; and 5) 11 patients with muscle weakness or muscle disease not due to myositis. In the first two groups of patients with myositis, antibodies against a nuclear RNP protein of 56 KD was identified in 12 of 16 sera. In contrast, such antibodies were found in the serum of only two of 20 patients with SLE but without muscle involvement (groups 3 and 4), and were not found at all in patients with other muscle diseases. This study has identified a new marker, antibodies against a nuclear RNP protein of 56 KD for detecting muscle involvement among the autoimmune rheumatic diseases.  相似文献   

14.
Bacteria express large numbers of non-coding, regulatory RNAs known as ‘small RNAs’ (sRNAs). sRNAs typically regulate expression of multiple target messenger RNAs (mRNAs) through base-pairing interactions. sRNA:mRNA base-pairing often results in altered mRNA stability and/or altered translation initiation. Computational identification of sRNA targets is challenging due to the requirement for only short regions of base-pairing that can accommodate mismatches. Experimental approaches have been applied to identify sRNA targets on a genomic scale, but these focus only on those targets regulated at the level of mRNA stability. Here, we utilize ribosome profiling (Ribo-seq) to experimentally identify regulatory targets of the Escherichia coli sRNA RyhB. We not only validate a majority of known RyhB targets using the Ribo-seq approach, but also discover many novel ones. We further confirm regulation of a selection of known and novel targets using targeted reporter assays. By mutating nucleotides in the mRNA of a newly discovered target, we demonstrate direct regulation of this target by RyhB. Moreover, we show that Ribo-seq distinguishes between mRNAs regulated at the level of RNA stability and those regulated at the level of translation. Thus, Ribo-seq represents a powerful approach for genome-scale identification of sRNA targets.  相似文献   

15.
16.
17.
18.
Urothelial cell carcinoma (UCC) is the second most common genitourinary malignant disease in the USA, and tobacco smoking is the major known risk factor for UCC development. Exposure to carcinogens, such as those contained in tobacco smoke, is known to directly or indirectly damage DNA, causing mutations, chromosomal deletion events and epigenetic alterations in UCC. Molecular studies have shown that chromosome 9 alterations and P53, RAS, RB and PTEN mutations are among the most frequent events in UCC. Recent studies suggested that continuous tobacco carcinogen exposure drives and enhances the selection of epigenetically altered cells in UCC, predominantly in the invasive form of the disease. However, the sequence of molecular events that leads to UCC after exposure to tobacco smoke is not well understood.

To elucidate molecular events that lead to UCC oncogenesis and progression after tobacco exposure, we developed an in vitro cellular model for smoking-induced UCC. SV-40 immortalized normal HUC1 human bladder epithelial cells were continuously exposed to 0.1% cigarette smoke extract (CSE) until transformation occurred. Morphological alterations and increased cell proliferation of non-malignant urothelial cells were observed after 4 months (mo) of treatment with CSE. Anchorage-independent growth assessed by soft agar assay and increase in the migratory and invasive potential was observed in urothelial cells after 6 mo of CSE treatment. By performing a PCR mRNA expression array specific to the PI3K-AKT pathway, we found that 26 genes were upregulated and 22 genes were downregulated after 6 mo of CSE exposure of HUC1 cells. Among the altered genes, PTEN, FOXO1, MAPK1 and PDK1 were downregulated in the transformed cells, while AKT1, AKT2, HRAS, RAC1 were upregulated. Validation by RT-PCR and western blot analysis was then performed. Furthermore, genome-wide methylation analysis revealed MCAM, DCC and HIC1 are hypermethylated in CSE-treated urothelial cells when compared with non-CSE exposed cells. The methylation status of these genes was validated using quantitative methylation-specific PCR (QMSP), confirming an increase in methylation of CSE-treated urothelial cells compared to untreated controls. Therefore, our findings suggest that a tobacco signature could emerge from distinctive patterns of genetic and epigenetic alterations and can be identified using an in vitro cellular model for the development of smoking-induced cancer.  相似文献   

19.
We have examined preimmune serum samples from a patient who progressively developed the symptoms of scleroderma CREST over a period of several years. During this period, anti-centromere antibodies (recognized by indirect immunofluorescence) appeared in the serum. Concomitant with the appearance of the anti-centromere antibodies, antibody species recognizing three chromosomal antigens in immunoblots of SDS polyacrylamide gels appeared in the patient's serum. These antigens migrate with electrophoretic mobilities corresponding to Mr=17, 80, and 140 kilodaltons (kd). Affinity-eluted antibody fractions recognizing the antigens have been prepared from sera of three other patients. Indirect immunofluorescence labeling of mitotic cells using these antibody fractions demonstrates that the antigens are centromere components. We designate them CENP (CENtromere Protein) — A (17kd), CENP-B (80kd), and CENP-C (140kd). The three CENP antigens share antigenic determinants. Immunoblotting experiments show that these patients make antibody species recognizing at least three distinct epitopes on CENP-B and two on CENP-C. Sera from different patients contain different mixtures of the antibody species.  相似文献   

20.
An autoantibody that binds an antigen localized to the stembody of dividing cells has been identified in a patient with systemic sclerosis. Initially, this antigen is associated with the surface of the metaphase chromosomes. At the onset of anaphase the antigen becomes preferentially associated with the forming stembodies. This association is maintained as furrowing progresses during telophase and continues after the intercellular bridge is released from the daughter cells during G-1. Immunoblots indicate that the epitope detected by immunofluorescence is present on a protein with an apparent molecular weight of 38 kD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号