首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duan Y  Liu J  Sato H  Zhang J  Tsuji H  Ozaki Y  Yan S 《Biomacromolecules》2006,7(10):2728-2735
The molecular weight dependence of poly(L-lactide)/poly(D-lactide) (PLLA/PDLA) stereocomplex behavior at the air-water interface was studied by surface pressure-area (pi-A) isotherms and atomic force microscopy (AFM). It was found that the compression-induced sterecomplexation of a PDLA/PLLA equimolar blend with high molecular weight (M(w) = 1 x 10(6) and 9.8 x 10(5), respectively) could occur at the air-water interface. This result is in marked contrast with the stereocomplexation of PDLA/PLLA blends in the bulk from the melt or in solutions, where the homocrystallites of either PLLA or PDLA rather than stereocomplex crystallites will be formed preferentially when the molecular weights of both polymers are higher than 1 x 10(5). Unexpectedly, the Langmuir-Blodgett behavior of the PDLA/PLLA blend with lower molecular weight (M(w) = 4 x 10(3) and 3.2 x 10(3), respectively), which should be favored in the stereocomplex, was distinct from that of other higher molecular weight blends. AFM images clearly disclosed for the first time the morphological changes of the equimolar blends of PLLA and PDLA at the air-water interface induced by increasing the surface pressure of the monolayer. Of particular note, the bilayer mechanism for the plateau in the isotherm was directly verified by the AFM height images.  相似文献   

2.
Phase structures and enzymatic degradation of poly(l-lactide) (PLLA)/atactic poly(3-hydroxybutyrate) (ata-PHB) blends with different compositions were characterized by using atomic force microscopy (AFM). Differential scanning calorimetry (DSC) thermograms of PLLA/ata-PHB blends with different compositions showed two glass transition temperatures, indicating that the PLLA/ata-PHB blends are immiscible in the melt. Surface morphologies of the thin films for PLLA/ata-PHB blends were determined by AFM. Phase separated morphology was recognized from the AFM topography and phase images. The domain size of the components was dependent on the blend ratio. Enzymatic degradation of the PLLA/ata-PHB blends was performed by using both PHB depolymerase and proteinase K. Either PLLA or ata-PHB domains were eroded depending on the kinds of enzyme. Surface morphologies after enzymatic degradation have revealed the phase structure along the depth direction. Enzymatic adsorption of PHB depolymerase was examined on the surface of PLLA/ata-PHB blends. The enzyme molecules were found on both domains of the binary blends. The larger number of enzyme molecules was found on the PLLA domains relative to those on the ata-PHB domains, suggesting the higher affinity of the enzyme against PLLA domain.  相似文献   

3.
Phase-separated biodegradable polymer blends were prepared from poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA), and Rhizopus arrhizus lipase-catalyzed hydrolysis and phase structure of the blend films were investigated. Gravimetry revealed that the lipase-catalyzed hydrolysis of PCL in PCL- and PLLA-rich phases is disturbed by the presence of PLLA. Polarimetry confirmed the occurrence of a predominant hydrolysis of PCL and subsequent removal of the hydrolyzed water-soluble PCL oligomers in the blend films. Gravimetry and gel permeation chromatography of the non-blended PLLA film indicated that R. arrhizus lipase has no catalytic effect on the hydrolysis of PLLA. The phase structure of the blend films could be visualized by selective enzymatic removal of one component and subsequent scanning electron microscopic observation.  相似文献   

4.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   

5.
6.
Wang CH  Hsiue GH 《Biomacromolecules》2003,4(6):1487-1490
A new series of cationic, thermo-sensitive, and biodegradable poly(L-lactide)-poly(2-ethyl-2-oxazoline)-poly(L-lactide) (PLLA-PEOz-PLLA) triblock copolymers were synthesized by ring-opening polymerization. With increasing molecular weight and crystallinity of hydrophobic PLLA blocks, the critical micellization concentrations (CMC) occurred at lower concentration. The PLLA-PEOz-PLLA aqueous solution was transparent at room temperature. Heating the solution resulted in precipitations, which were caused by the combination of dehydration of water around PEOz and the aggregations of PLLA segments. Acid/base titration profiles indicated that PLLA-PEOz-PLLA were protonated at neutral and acidic conditions. Considerable buffering capacity was found over the entire pH range. The specific PLLA-PEOz-PLLA triblock copolymers with thermal- and pH-sensitive properties can be tailored by varying the compositions and can be applied as controlled release carries for biomedical applications.  相似文献   

7.
A poly(L-lactide)-b-poly(Nepsilon-(Z)-L-lysine) (PLLA-b-PZLys) block copolymer was synthesized through the ring-opening polymerization of Nepsilon-(Z)-lysine-N-carboxyanhydride using L-Phe-terminated PLLA as a macroinitiator. The L-Phe-terminated PLLA was prepared through a novel three-step process. First, the hydroxyl-terminated PLLA was synthesized through the ring-opening polymerization of L-lactide initiated by n-butanol under the existence of tin(II) ethylhexanoate. Subsequently, the complete capping of the hydroxyl end group of PLLA with BOC-L-Phe was achieved by using a mixed anhydride of BOC-L-Phe under the catalysis of 4-(1-pyrrolidinyl) pyridine. Finally, the free amino end group was obtained by removal of the t-butoxycarbonyl group through trifluoroacetic acid treatment under anhydrous condition. All these treatments were conducted under mild conditions, thus avoiding the breakdown of the PLLA backbone. Poly(L-lactide)-b-poly(L-lysine) block copolymer was produced after deprotection treatment of PLLA-b-PZLys. The structure of the block copolymer was confirmed by 1H NMR, IR, and GPC. Adjustment of the ratio of the NCA monomer to the macroinitiator could control the chain length of the PLys block.  相似文献   

8.
The degradation of poly[(R,S)-3-hydroxybutyrate], a-PHB, binary blends with natural PHB (n-PHB) and poly(L-lactic acid), PLLA, respectively, has been investigated in soil. In such a natural environment, a-PHB blend component was found to biodegrade. The degradation of a-PHB-containing blends proceeded faster than that of respective plain n-PHB and PLLA. The molecular weight decrease of the n-PHB component was higher, while the same rate of bioerosion of both components was observed for the a-PHB/n-PHB binary blend. For the a-PHB blend with PLLA, the weight loss was accompanied by blend composition changes and the decrease of a-PHB content. However, the PLLA molecular weight decrease was lower in the blend in comparison with the plain PLLA sample. The increase of the number of microorganisms particularly observed for the soil where binary blends were incubated indicates that microbial degradation of a-PHB takes place. The terrestrial plant growth test (cress and barley) demonstrates no environmental toxicity of the materials studied.  相似文献   

9.
The aim of this study was to explore the in vivo behavior and histocompatibility of poly(trimethylene carbonate-co-D,L-lactide) (PDLLA/TMC) and its feasibility of manufacturing cardiovascular stents. Copolymers with 50/50 molar ratio were synthesized by ring-opening polymerization with TMC and D, L-LA, or TMC and L-LA. Poly(L-lactide) (PLLA) was synthesized as a control. The films of the three polymers were implanted into 144 Wistar rats. At different time points of implantation, polymer films were explanted for the evaluation of degradation characteristics and histocompatibility using size exclusion chromatography , nuclear magnetic resonance , environmental scanning electron microscope , and optical microscope. Results showed that there were differences in the percentage of mass loss, molecular weight, shape and appearance changes, and inflammation cell counts between different polymers. With the time extended, the film's superficial structure transformed variously, which was rather obvious in the polymer of PDLLA/TMC. In addition, there were relatively lower inflammation cell counts in the PDLLA/TMC and poly(trimethylene carbonate-co-L-lactide) (PLLA/TMC) groups at different time points in comparison with those in the PLLA group. The differences were of statistical significance (P< 0.05) in the group of PDLLA/TMC vs. PLLA, and the group of PLLA/TMC vs. PLLA, but not within the PDLLA/TMC and PLLA/TMC groups (P> 0.05). These results suggested that the polymer of PDLLA/TMC (50/50) with favorable degradation performance and histocompatibility is fully biodegradable and suitable for manufacturing implanted cardiovascular stents.  相似文献   

10.
Poly(L-lactide)-based microspheres having cationic or anionic surfaces were prepared using polydepsipeptide-block-poly(L-lactide)s as surfactants. Polydepsipeptide-block-poly(L-lactide)s having amino or carboxylic acid groups on their side chains were synthesized through anionic ring-opening polymerizations of L-lactide using the corresponding protected polydepsipeptides as macroinitiators and consequent deprotections. Since these amphiphilic copolymers consisting of hydrophobic segments and hydrophilic segments with amino or carboxylic acid groups could be converted to cationic or anionic block copolymers, they could act as surfactants preparing poly(L-lactide)-based microspheres by an oil-in-water emulsion method. The amount of ionic groups located on the surfaces of the obtained microspheres was found to increase with increasing the feed of charged polydepsipeptide-block-poly(L-lactide)s in the blend of poly(L-lactide) and block copolymers. The average diameters of the dried microspheres estimated by scanning electron microscopy were found to decrease with an increase in feed of block copolymers in polymer blends.  相似文献   

11.
Blends of poly (l-lactide) (PLLA) and poly (ε-caprolactone) (PCL) with and without paclitaxel were prepared via solution casting. DSC analysis as well as SEM analysis of the PLLA/PCL blend solution cast films showed that these blends are all phase separated.%PLLA crystallinity was found to increase with increasing PCL content (up till 15 wt.%). The PCL phase is found to homogeneously disperse in the PLLA matrix as spherical domains where the pore diameters of the PCL domains significantly increased with increasing PCL content. The degradation profiles matched with the slower degrading component PCL rather than PLLA and also increasing PCL content of the blends increased the degradation rate relatively. The increased crystallinity of the PLLA phase with increasing PCL contents confirmed that the degradation occurred through PCL phase. Cell proliferation on PLLA/PCL blends showed that all these blends were suitable for the support of cellular growth. Apoptosis assay with the paclitaxel-loaded PLLA/PCL blends showed an increase in cell death throughout 7 days of incubation where the cell death was increased with increasing PCL contents. This was attributed to the faster release of paclitaxel which was at least partially affected by the faster degradation rate at increasing PCL contents. The paclitaxel release was shown to be degradation controlled in the initial stages followed by a faster diffusion-controlled release in the later stages. These polymer blends were found to be very suitable paclitaxel release agents for which the paclitaxel release times can be altered with the composition of the blend and the film thickness.  相似文献   

12.
Kobori Y  Iwata T  Doi Y  Abe H 《Biomacromolecules》2004,5(2):530-536
End-capped poly(L-lactide) (PLLA) samples with dodecyl or 2-(2-(2-methoxyethoxy)ethoxy)ethyl (MEEE) ester were synthesized by ring-opening polymerization of L-lactide in the presence of zinc dodecanoxide or zinc 2-(2-(2-methoxyethoxy)ethoxy)ethoxide as a catalyst, respectively. On the basis of NMR analysis, it was confirmed that the carboxylic acid chain ends of PLLA molecules were selectively substituted by dodecyl or MEEE ester groups. To evaluate the wettability on the surface of end-capped PLLA films, the advancing contact angle (thetaa) with water was measured. The amorphous PLLA films showed relatively similar thetaa values regardless of the chemical structure of the polymer chain end. In contrast, the thetaa values of semicrystalline films were varied over a wide range, dependent on the chemical structure of the chain end. In addition, the thetaa values of dodecyl ester end-capped PLLA film with low molecular weight increased with an increase in the crystallization temperature. Both the crystallinity and lamellar thickness of dodecyl ester end-capped PLLA films increased with the crystallization temperature. These results suggest that the segregation of the chain ends on the PLLA film surface was strongly affected by the crystallization conditions.  相似文献   

13.
Plasticization of poly(L-lactide) with poly(propylene glycol)   总被引:3,自引:0,他引:3  
A new plasticizer for poly(L-lactide) (PLA)-poly(propylene glycol) (PPG) is proposed. The advantage of using PPG is that it does not crystallize, has low glass transition temperature, and is miscible with PLA. PLA was plasticized with PPGs with nominal Mw of 425 and 1000 g/mol. Poly(ethylene glycol) (PEG), long known as a plasticizer for PLA, with nominal Mw of 600 g/mol, was also used to plasticize PLA for comparison. The thermal and tensile properties of PLA and PLA with 5-12.5 wt % of the plasticizers were studied. In blends of PLA with PPGs the glass transition temperature was lower than that of neat PLA. Both PPGs enhanced the crystallizability of PLA albeit less than PEG. All of the plasticizers increased also the ability of PLA to plastic deformation which was reflected in a decrease of yield stress and in an increase of elongation at break. The effect was enhanced by the higher PPG content and also by lower molecular weight of PPG. A phase separation occurred only in the blend containing 12.5 wt % of PPG with higher molecular weight. The evidences of crazing were found in deformed samples of PLA with low plasticizer content, whereas the samples with higher content of plasticizers crystallized due to deformation.  相似文献   

14.
Park JW  Doi Y  Iwata T 《Biomacromolecules》2004,5(4):1557-1566
Blends of poly(L-lactic acid) (PLLA) with two kinds of poly[(R)-3-hydroxybutyrate] (PHB) having different molecular weights, commercial-grade bacterial PHB (bacterial-PHB) and ultrahigh molecular weight PHB (UHMW-PHB), were prepared by the solvent-casting method and uniaxially drawn at two drawing temperatures, around PHB's T(g) (2 degrees C) for PHB-rich blends and around PLLA's T(g) (60 degrees C) for PLLA-rich blends. Differential scanning calorimetry analysis showed that this system was immiscible over the entire composition range. Mechanical properties of all of the samples were improved in proportion to the draw ratio. Although PLLA domains in bacterial-PHB-rich blends remained almost unstretched during cold drawing, a good interfacial adhesion between two polymers and the reinforcing role of PLLA components led to enhanced mechanical properties proportionally to the PLLA content at the same draw ratio. On the contrary, in the case of UHMW-PHB-rich blends, the minor component PLLA was found to be also oriented by cold drawing in ice water due to an increase in the interfacial entanglements caused by the very long chain length of the matrix polymer. As a result, their mechanical properties were considerably improved with increasing PLLA content compared with the bacterial-PHB system. Scanning electron microscopy observations on the surface and cross-section revealed that a layered structure with uniformly oriented microporous in the interior was obtained by selectively removal of PLLA component after simple alkaline treatment.  相似文献   

15.
Poly(L-lactide) (PLLA) thin film with 100 nm thickness was crystallized at 160 degreesC for 20 min from the melt obtained at 220 degreesC. Hexagonal crystals with three types of growth (derivative growth lamellae, overgrowth multistacked lamellae, and undergrowth multistacked lamellae) were simultaneously observed by atomic force microscopy (AFM). These phenomena are due to the differences of the formative points of secondary crystal nuclei against the basal lamella. Enzymatic degradation of PLLA thin film revealed two types of amorphous regions. These regions were identified as the free amorphous region around the crystals and the restricted amorphous region between the crystal and glass substrate. In situ observation of thermal behavior of lamellar crystals was performed to understand the correlation between the chain folding and stability of the crystal by using temperature-controlled AFM. The morphology of the sectors with [100] growth plane had changed to a comblike morphology despite the fact that the [110] growth plane remained unchanged, suggesting that the stability of the chain folding and the chain-packing state affected the thermal behavior.  相似文献   

16.
Homocrystallized and amorphous enantiomeric blend films were prepared from the melt of high molecular weight poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) (1:1) by crystallization and quenching, respectively. A phosphate-buffered solution was used to investigate effects of homocrystallinity via in vitro hydrolysis as well as crystallization process during the hydrolysis, which was performed for a period of 24 months at 37 degrees C and pH 7.4. Results derived from gravimetry, gel permeation chromatography, and tensile testing showed that hydrolyzability was higher for the homocrystallized film than for the amorphous film. Thus, probable mechanisms are proposed for the enhanced hydrolysis of the homocrystallized blend film compared with that of the amorphous blend film. The hydrolysis rate constant (k) values of the homocrystallized and amorphous films estimated from the changes in number-average molecular weight (M(n)) were 5.00 x 10(-3) and 3.32 x 10(-3) day(-1), respectively. Moreover, hydrolyzability of equimolar enantiomeric poly(lactic acid) blends can be altered in the k range of 0.73 x 10(-3) and 5.00 x 10(-3) day(-1) by varying their crystalline species, crystallinity, or molecular weights.  相似文献   

17.
Poly(L-lactide) (PLLA) with various alkyl ester chain end groups were synthesized by ring-opening polymerization of L-lactide in the presence of zinc alkoxide as a catalyst. The structural effect of chain end groups on the rate of enzymatic and nonenzymatic degradations for amorphous films of PLLA were investigated at 37 degrees C in a Tris-HCl buffer solution (pH 8.6) with proteinase K and at 60 degrees C in a phosphate buffer solution (pH 7.4), respectively. The rate of enzymatic degradation for PLLA films was dependent on the carbon numbers of alkyl ester chain end groups, and the rates of PLLA samples with dodecyl (C12), tridecyl (C13), and tetracocyl (C14) ester end groups were much lower than those of the other samples. The surface morphologies of PLLA films after enzymatic degradation were characterized by scanning electron microscopy. After the enzymatic degradation, non-end-capped PLLA, PLLA with methyl (C1) and hexyl (C6) ester chain ends, were degraded homogeneously by proteinase K and the film surface was very smooth. In contrast, the PLLA with alkyl ester chain ends of carbon numbers over 12 were degraded heterogeneously by the enzyme, and the sponge-like network structure was formed on the film surface. These results indicated that the long alkyl ester groups at the chain ends of PLLA molecules aggregated in the amorphous films and the erosion rate was depressed due to the coverage of the aggregated terminal groups on the film surface. For the nonenzymatic degradation, the molecular weight of non-end-capped PLLA was remarkably decreased with progress of degradation. In contrast, the molecular weight of the end-capped PLLA gradually reduced at the initial stage of degradation and then the rate of degradation was accelerated. The decreases of molecular weight of PLLA by autocatalyzed degradation were retarded by the capping of carboxyl chain ends.  相似文献   

18.
Li Y  Li Q  Li F  Zhang H  Jia L  Yu J  Fang Q  Cao A 《Biomacromolecules》2006,7(1):224-231
This study presents investigations on new approaches to novel biodegradable amphiphilic poly(L-lactide)-b-dendritic poly(L-lysine)s bearing well-defined structures. First, two new Boc-protected poly(L-lysine) dendron initiators G(2)OH 4 (generation = 2) and G(3)OH 6 (generation = 3) with hydroxyl end functional groups were efficiently derived from corresponding precursors 3 and 5 via methyl ester substitution with ethanolamine. Subsequently, two series of new diblock copolymers of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s (S1-S2, S3-S4) were prepared in chloroform through ring-opening copolymerization of poly(L-lactide)s with a metal-free catalyst of organic 4-(dimethylamino) pyridine (DMAP) in the presence of a corresponding new poly(L-lysine) dendron initiator. Further, molecular structures of the prepared new dendron initiators as well as those of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s bearing different dendron blocks and PLLA lengths were examined by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), mass spectrometry (ESI-MS, MALDI-FTMS), and thermal gravimetric analysis (TGA). The results demonstrated successful formation of the synthetic precursors, functional dendron initiators, and new diblock copolymers. In addition, the very narrow molecular weight distributions (PDI = 1.10-1.14) of these poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s further indicated their well-defined molecular structures. After the efficient Boc-deprotection for the dendron amino groups with TFA/CH(2)Cl(2), new diblock poly(L-lactide)-b-dendritic poly(L-lysine)s bearing lipophilic PLLA and hydrophilic dendritic PLL were finally prepared. It was noteworthy that the MALDI-FTMS result showed that no appreciable intermolecular chain transesterification happened during the ROP of L-lactide catalyzed by the DMAP. Moreover, self-assembly of these new biodegradable amphiphilic copolymers in diverse solvents were also preliminarily studied.  相似文献   

19.
The ability of amphiphilic block copolymers that consist of polyethylenimine (PEI) and poly(L-lactide) (PLLA) to modulate the delivery of plasmid DNA was evaluated. Folate-polyethylenimine-block-poly(l-lactide) (folate-PEI-PLLA) was synthesized by linking folic acid and PLLA to PEI diamine. Water-soluble polycation PEI provides gene-loading capability. Additionally, PEI is considered to exhibit high transfection efficiency and endosomal disrupting capacity. Hydrophobic PLLA that is incorporated into the gene delivery vector is believed to enhance the cell interactions and tissue permeability of the delivery system. Polymeric carrier containing folic acid is expected to be able to identify tumor surface receptors and transfect cells by receptor-mediated endocytosis. The results of agarose retardation assay indicated that the folate-PEI-PLLA began to form polyplexes at a polymer/DNA weight ratio (P/D) of over 10, whereas branched polyethylenimine (B-PEI) formed polyplexes with DNA at a ratio of above 1. The spherical particle morphology was supplemented with a particle size of approximately 100 nm at 10 P/D ratio. The results indicated that folate-PEI-PLLA with proper PEI/PLLA ratio effectively reduced cytotoxicity and maintained acceptable transfection efficiency. Low cytotoxicity of the folate-PEI-PLLA gives an advantage to high-dose administration.  相似文献   

20.
Feng H  Dong CM 《Biomacromolecules》2006,7(11):3069-3075
Biodegradable chitosan-graft-poly(L-lactide) (CS-g-PLLA) hybrid amphiphiles were prepared through direct grafting of a PLLA precursor to the backbone of CS. The average number of PLLA grafts per CS could be adjusted by the feed ratio of PLLA to CS, and it varied from 1.3 to 16.8. Moreover, both the crystallization rate and degree of crystallization of PLLA grafts with these graft copolymers could be adjusted by the chain length of PLLA and the number of PLLA grafts per CS, respectively. Meanwhile, CS-g-PLLA exhibited good solubility in some nonpolar and polar organic solvents compared with the original CS. Furthermore, self-assembled nanoparticles could be generated by direct injection of these graft copolymer solutions into distilled water, and their critical aggregation concentration decreased with increasing number of PLLA grafts per CS. The average size of the nanoparticles (25-103 nm) could be adjusted through the graft copolymer composition and the graft copolymer concentration, which was very different from the observations in ordinary PLLA-b-poly(ethylene oxide) amphiphiles. Significantly, this will provide a convenient method not only to combine the bioactive functions of CS with the good mechanical properties of biodegradable polymers, but also to generate nanoparticles with adjustable sizes for targeted drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号