首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Understanding the effects of shear forces on biopolymers is key to understanding how biological systems function. Although currently there is good agreement between theoretical predictions and experimental measurements of the behavior of DNA and large multimeric proteins under shear flow, applying the same arguments to globular proteins leads to the prediction that they should only exhibit shear-induced conformational changes at extremely large shear rates. Nevertheless, contradictory experimental evidence continues to appear, and the effect of shear on these biopolymers remains contentious. Here, a custom-built rheo-NMR cell was used to investigate whether shear flow modifies enzyme action compared with that observed quiescently. Specifically, 1H NMR was used to follow the kinetics of the liberation of methanol from the methylesterified polysaccharide pectin by pectinmethylesterase enzymes. Two different demethylesterifying enzymes, known to have different action patterns, were used. In all experiments performed, Couette flows with shear rates of up to 1570 s−1 did not generate detectable differences in the rate of methanol liberation compared to unsheared samples. This study provides evidence for a shear-stable macromolecular system consisting of a largely β-sheet protein and a polysaccharide, in line with current theoretical predictions, but in contrast to some other experimental work on other proteins.  相似文献   

2.
The technological properties of pectins are generally influenced by their chemical modification. Thus, amidated pectins are important derivatives with good emulsifying properties at low concentrations. The present article focuses on the comparative study of physicochemical properties of three modified pectin derivatives. Various amphiphilic derivatives in which pectin is associated with hydrophobic amines chains were prepared. The reaction was carried out in heterogeneous medium in methanol at 20 °C for 7 days and with 0.5 pectin/alkylamine mass ratio. The degrees of amidation (DA) of the derivatives were calculated based on the results of FTIR spectroscopy. The surface-active properties of the modified pectins were determined by surface tension (air/water) and interfacial tension (oil/water) measurements. The aminolysis of pectins appears to be an interesting way to produce pectin derivatives with new properties able to stabilize oil-in-water emulsions.  相似文献   

3.
The functional properties of whey proteins can be improved by conjugation with citrus pectin. Although protein-polysaccharide conjugates can be performed using extrusion processing, little is known about the influence of the extrusion conditions (e.g., temperature, shear stress, time) on the reactions taking place. As during extrusion processing, thermal and mechanical stresses are coupled to each other, their influence on the reactions taking place cannot be investigated separately. This study aims to get a deeper understanding of the influence of defined shear rates on structural changes and functional properties of highly concentrated whey protein-citrus pectin blends treated at elevated temperatures by using a closed-cavity rheometer (CCR). The CCR provides the opportunity to examine the impact of thermal and mechanical stresses in highly concentrated systems independently. The analyses of structural changes showed that the formation of disulfide bonds was accelerated with increasing shear. Temperature treatments at 120 °C and 140 °C resulted in the formation of non-disulfide covalent cross-links (e.g., Maillard reaction products and isopeptides), while shear inhibited their formation at treatment conditions up to 140 °C and 2 min. The samples treated at 140 °C and 2 min (with and without the application of shear) exhibited improved emulsifying capacities which is attributed to changes in their interfacial properties. This might be due to high concentrations of fluorescent compounds indicating the formation of Maillard reaction products (e.g., conjugates).  相似文献   

4.
Several constitutive models have been discussed to explain data for some foods in diluted and concentrated systems. Firstly, the theories of Rouse and Zimm, as well as rod-like theory, were used to study the conformation of the pectins in dilute solution. Among the dilute theories, the random coil theory of Zimm best explained the experimental data and suggested a certain level of intermolecular interaction present in the dilute pectin solution.

The Bird-Carreau constitutive theory with four empirical constants and zero shear limiting viscosity was used to describe the viscoelastic properties of the solutions of the guar, CMC/guar, glutenin, gluten and wheat flour doughs. The Bird-Carreau model was able to predict η and η′ in the high and low frequency regions for 1% guar solution. In the case of CMC/guar blend, the Bird-Carreau model explained steady shear and dynamic properties very well in the higher shear rate or frequency region of 1–100 s−1. However, η″/ω does not tend to a zero shear constant value. The Bird-Carreau model also gave good predictions on the rheological properties of gluten and glutenin biopolymers in the free-flow region.

The polydisperse type, Doi-Edwards model, fits the experimental G′ and G″ better than the monodisperse model for 5% apple pectin dispersion. However, there is still a discrepancy between experimental and predicted values.  相似文献   


5.
In vivo and in vitro swelling of cell walls during fruit ripening   总被引:17,自引:0,他引:17  
Swelling properties of the cell walls of nine temperate fruit species, selected for their different ripening and textural characteristics, were studied during ripening. Cell wall swelling was examined in intact fruit using microscopy techniques and in vitro, using cell wall material isolated from fruit tissue. In fruit which ripened to a soft melting texture (persimmon, avocado, blackberry, strawberry, plum), wall swelling was pronounced, particularly in vitro. In-vivo swelling was marked only in avocado and blackberry. Fruit which ripened to a crisp, fracturable texture [apple (two cultivars), nashi pear, watermelon] did not show either in-vivo or in-vitro swelling of the cell wall. There was a correlation between swelling and the degree of pectin solubilisation, suggesting that wall swelling occurred as a result of changes to the viscoelastic properties of the cell wall during pectin solubilisation. Chemical and enzymatic removal of pectin from kiwifruit cell wall material supported the idea that swelling is associated with movement of water into voids left in the cellulose-hemicellulose network by the solubilised pectin. However, the results also suggested that swelling in vivo was more complex than this, and that the physicochemical changes which led to swelling included other elements of cell wall modification involving the site and mechanism of pectin solubilisation and-or the cellulose-xyloglucan complex. Received: 28 January 1997 / accepted: 11 March 1997  相似文献   

6.
Pectin was de-esterified with purified recombinant Aspergillus aculeatus pectin methyl esterase (PME) during isothermal-isobaric treatments. By measuring the release of methanol as a function of treatment time, the rate of enzymatic pectin conversion was determined. Elevated temperature and pressure were found to stimulate PME activity. The highest rate of PME-catalyzed pectin de-esterification was obtained when combining pressures in the range 200-300 MPa with temperatures in the range 50-55 degrees C. The mode of pectin de-esterification was investigated by characterizing the pectin reaction products by enzymatic fingerprinting. No significant effect of increasing pressure (300 MPa) and/or temperature (50 degrees C) on the mode of pectin conversion was detected.  相似文献   

7.
The exothermic effects observed on wetting pectins with water and aliphatic alcohols were studied using a microcalorimeter.The heat released on wetting 1 g pectin with water was found to be 171 ± 7·5 J g?1. It was experimentally established that 1 g of dry pectin exothermically bonded up to 0·57 g of water.By using the Gibbs-Helmholtz-Young equation which relates the heat released by wetting to the area of the wetted surface, it was estimated that the surface accessible to water in 1 g of pectin was 1·46 × 103 m2 g?1. The heat of hydration was independent of the degree of esterification of the pectin. The experimental results revealed that there were about six molecules of energetically bonded water per monomer unit of pectin.A specific interaction between methanol and the methoxyl groups of pectin was observed on wetting pectins with methanol and dependence was established between the released heat and the degree of esterification. No similar dependence was reported for the remaining aliphatic alcohols.  相似文献   

8.
Hydrodynamic properties are important parameters affecting the performance of pectin. This polysaccharide is used as a thickening and gelling agent in food and pharmaceutical industries. The most common and economical of the hydrodynamic properties is the determination of viscosity, in which are determined the intrinsic viscosity and the diffusion coefficient. They indirectly measure the molecular weight (M(w)); hydrodynamic radius (R(H)); number of Simha, (ν(a/b)); Perrin parameter (P); Scheraga-Mandelkern parameter (β); and Flory parameters (?(0) and P(0)). All the hydrodynamic parameters are dependent on temperature. Normally these parameters are reported at a temperature of 25°C, which limits their application to different temperatures. This work studies pectin dependence on temperature, finding that this biopolymer in aqueous solution presents a conformation of rod-like with ν(a/b)=10.5, and a value from 0.8232 to 0.8129. Pectin behavior in this system indicates that it behaves like a colloidal particle that tends to compact with increasing temperature (R(H) decrease). The molecular weight calculated for pectin is 180,000 g/mol. Mark-Houwink-Sakurada (M-H-S) equation constants, a and k, for pectin in water solvent-temperature systems have been already reported.  相似文献   

9.
Pectin and cellulose are major components of most primary cell walls, yet little is known about the way in which they interact either during assembly or in subsequent functional performance of the wall. As a mimic of cell wall assembly, we studied the formation of molecular composites formed by deposition of cellulose from Acetobacter xylinus into pectin/calcium systems, and the molecular, architectural and mechanical properties of the composites obtained. The formation of interpenetrating cellulose/pectin composite networks (as envisaged in current models for primary cell walls) required a pre-existing, but not too strong, pectin network. For pectin either in solution or strongly networked, phase separation from cellulose occurred, providing two physical models for the formation of middle lamellae. Composite networks showed no evidence of direct molecular interaction between the components, but pectin networks became more aggregated following deposition of cellulose into them. The shear strength under small deformation conditions for cellulose/pectin composites was very similar to that of cellulose alone. In contrast, under uniaxial tension, extensibility was greatly increased and stiffness decreased. These major changes were due to the effect of pectin on cellulose network architecture at deposition, as they were maintained upon removal of the pectin component. These results show that the presence and physical state of pectin at the time of cellulose deposition in muro may be a significant determinant of subsequent extensibility without compromising strength.  相似文献   

10.
Thermally reversible acid-induced gelation of low-methoxy pectin   总被引:1,自引:0,他引:1  
Gelation of low-methoxy pectin (DE 31.1) on cooling under acidic conditions in the absence of Ca2+ has been investigated by rheological measurements under low-amplitude oscillatory shear. The mechanical spectra obtained after 60 min at 5°C showed a progressive increase in solid-like response (increasing G′; decreasing tan δ; increasing frequency-dependence of η*) as the pH was reduced from 4.0 to 1.6, with formation of a critically crosslinked network at pH 3.0 (for a polymer concentration of 3.0 wt%). By extrapolation from X-ray fibre diffraction analysis of pectic acid, it is suggested that crosslinking occurs by association of three-fold helices. At pH values between 3.5 and 2.5 there is no detectable thermal hysteresis between the sol–gel transition on cooling and gel–sol transition on heating, and both are accompanied by a sigmoidal change in optical rotation (attributed to formation and melting of three-fold order). Substantial hysteresis is, however, observed at lower and higher pH, and is attributed to extensive aggregation as electrostatic repulsion is suppressed (below pH 2.5) and slow formation of intermolecular hydrogen bonds by protonated carboxyl groups (above pH 3.5), respectively. The transition enthalpy from DSC heating scans has a maximum value of ΔH≈11 J/g at pH 3.0, but decreases sharply at lower and higher pH, with accompanying loss of a detectable transition in optical rotation. It is suggested that the chain conformation in solution at low pH is predominantly three-fold with, therefore, little conformational change on adoption of the ordered, intermolecular structure, whereas at high pH the solution conformation is predominantly two-fold, with only limited conversion to the three-fold (acid) form on cooling.  相似文献   

11.
The aim of this study was to modify pectin by covalent attachment of the water-insoluble ligand 4-aminothiophenol to its polymeric backbone. 4-Aminothiophenol is a ligand which is highly prone to oxidation. Therefore, this ligand allows oxidative cross-linking of pectin under mild oxidative conditions. Additionally, hydrophobization of pectin can be achieved by the mentioned modification which offers certain advantages over highly hydrophilic native pectins. 4-Aminothiophenol was covalently attached to pectin via amide bond formation between carboxylic moieties of pectin and the amino-group of 4-aminothiophenol. Two different pectin–4-aminothiophenol conjugates were synthesized and investigated regarding the amount of coupled ligand, rheological behavior under oxidative conditions, swelling behavior, and cytotoxic effects. Within this study, 557.3 ± 49.0 and 158.8 ± 23.1 μmol 4-aminothiophenol have been coupled per gram pectin. Within both conjugates, around 75% of the bound ligand appeared in its reduced form. Within rheological studies, a 500-fold increase in viscosity was achieved by addition of hydrogen peroxide as an oxidizing agent. Investigations on the swelling behavior revealed that this hydrophobic modification of pectin results in decelerated water uptake on the one hand and improved cohesive properties after oxidation of thiol groups to disulfide bonds on the other hand. Thereby, the maximum amount of water which can be uptaken by pectin matrices could be increased. According to these results, Pec-ATP conjugates could be valuable tools for several pharmaceutical applications due to the established method of gelation and the altered swelling and disintegration behavior.  相似文献   

12.
The effect of basic peptides on the gelation of a pectin from the cell wall of tomato was examined through the determination of gel stiffness, and swelling behaviour of the gel in water. Poly-L-lysine, poly-L-arginine, and a synthetic peptide, designed to mimic a sequence of basic amino acids found in a plant cell wall extensin, act as crosslinking agents. Circular dichroism studies on the interaction of synthetic extensin peptides with sodium polygalacturonate demonstrated that a conformational change was induced as a result of their complexation. In addition to their effect as crosslinking agents, the polycationic peptides reduced the swelling of the pectin network in water.  相似文献   

13.
We have examined the mechanical behaviour of different types of pectin at high concentrations (> 30% w/w), relevant to the behaviour of pectin in the plant cell wall, and as a film-forming agent. Mechanical properties were examined as a function of counterion type (K(+), Ca(2+), Mg(2+)), concentration and extent of hydration. Hydration was controlled in an osmotic stress experiment where pectin films were exposed to concentrated polyethylene glycol [PEG] solutions of known osmotic pressure. We investigated the mechanical behaviour under simple extension. The results show that the swelling and stiffness of the films are strongly dependent on pectin source and ionic environment. At a fixed osmotic stress, both Ca(2+) or Mg(2+) counterions reduce swelling and increase the stiffness of the film.  相似文献   

14.
Nanoparticulate complexes of plasmid DNA (pDNA) with cationic liposomes/polymer, of approx 200 nm diameter, were encapsulated with a high degree of efficiency within calcium pectinate gel beads. Electron microscopy showed the DNA nanocomplexes to be evenly distributed throughout the gel matrix. Controlled release of pDNA-lipid nanocomplexes was achieved by the action of pectinase enzymes, whereas release of naked and polymer-complexed DNA was found to be more greatly influenced by the swelling behavior of the polysaccharide matrices in buffer alone. Physical degradation of pDNA within pectin beads was found to be accelerated during bead drying, most probably as a result of shear forces generated within the gel matrices by the evaporation of water. Plasmid complexation with cationic liposomes provided a greater degree of protection for the DNA during bead drying than complexation with cationic polymer, and was shown to successfully transfect cultured cells after release from the beads, via the action of pectinase. Observations concerning the physical stability of nanocomplexed pDNA, and its encapsulation within and release from pectin gel beads, are discussed with reference to the electrostatic interactions existing between the various components.  相似文献   

15.
Microbial methanol formation: A major end product of pectin metabolism   总被引:1,自引:0,他引:1  
Various pectinolytic strains ofClostridium, Erwinia, andPseudomonas species produced methanol as a major end product during growth on pectin but not on glucose or polygalacturonic acid. Pectin metabolism ofClostridium butyricum strain 4P1 correlated with a final product concentration of 16 mM at the end of growth, and a 1:1 stoichiometry for methanol production and percent initial substrate methoxylation. Growth on pectin was associated with high activity of pectin methylesterase and the absence of methanol consumption. The ecological significance of pectin metabolism and the establishment of microbial methylotrophic metabolism in nature is discussed.  相似文献   

16.
Calorimetric heat effects and structural rearrangements assessed by means of Fourier transform infrared (FTIR) amide I spectra were followed by immersing dry human serum albumin and bovine pancreatic alpha-chymotrypsin in low water organic solvents and in pure water at 298 K. Enthalpy changes upon immersion of the proteins in different media are in a good linear correlation with the corresponding IR absorbance changes. Based on calorimetric and FTIR data the solvents were divided into two groups. The first group includes carbon tetrachloride, benzene, nitromethane, acetonitrile, 1,4-dioxane, n-butanol, n-propanol and pyridine where no significant heat evolution and structural changes were found during protein immersion. Due to kinetic reasons no significant protein-solvent interactions are expected in such systems. The second group of solvents includes dimethyl sulfoxide, methanol, ethanol, and water. Immersion of proteins in these media results in protein swelling and involves significant exothermic heat evolution and structural changes in the protein. Dividing of different media in the two groups is in a qualitative correlation with the solvent hydrophilicity defined as partial excess molar Gibbs free energy of water at infinite dilution in a given solvent. The first group includes the solvents with hydrophilicity exceeding 2.7 kJ/mol. More hydrophilic second group solvents have this energy values less than 2.3 kJ/mol. The hydrogen bond donating ability of the solvents also assists in protein swelling. Hydrogen bonding between protein and solvent is assumed to be a main factor controlling the swelling of dry solid proteins in the studied solvents.  相似文献   

17.
The interfacial partitioning behavior of ampicillin and phenylglycine crystals in different two-phase systems has been investigated. The two-phase systems employed are water/dodecane, water/1-butanol, and water/pentane/methanol. By means of partition experiments and microscopic imaging, it has been shown that the mechanism of separation strongly depends on the choice of the two-phase system. While water/dodecane features a mechanism of sheer competitive adsorption at the interface, separation in water/1-butanol is mainly due to partitioning into both liquid phases, leading to a higher degree of separation. Experiments with water/pentane/methanol have illustrated the large potential of three-component systems, as slight variations in the composition can have large effects on the separation.  相似文献   

18.
Small-deformation oscillatory measurements were performed on pectin-sucrose-glucose syrup systems at a total level of solids of 81%, with the polysaccharide content being fixed at levels of industrial use (1%). The experimental temperature range was between 50 and - 50 degrees C. Analysis of the temperature dependence of viscoelastic processes by the equation of Williams, Landel, and Ferry provides values of fractional free volume for the temperatures covering the glass transition region. The shift factors used in the conversion of mechanical spectra into master curves were normalised at suitably different temperatures so that their temperature dependence becomes coincident. The treatment implies an iso-free-volume state and relates to changes in the monomeric friction coefficient with increasing levels of intermolecular interactions in the mixture. A free-volume related glass transition temperature was defined and manipulated markedly by introducing pectin of variable degrees of esterification to the sucrose-glucose syrup system.  相似文献   

19.
The ageing process of high methoxyl pectin (HMP)/sucrose gels was followed at different ageing temperatures by small amplitude oscillatory experiments. Dynamic mechanical measurements allowed the characterisation of the point at which the system undergoes the sol/gel transition. The HMP/sucrose system is extremely sensitive to temperature variation during ageing, especially in the lower temperature range. The viscoelastic behaviour through the gel point changes with the ageing temperature, probably due to variations in mobility of the pectin chains, and consequently, in the lifetime of junction zones. Weaker pectin networks are formed under thermal conditions unfavourable to the development of hydrophobic interactions. Gel time and elastic modulus have a complex dependence on temperature, which could be attributed to the different thermal behaviour of the intermolecular interactions that stabilise the nonpermanent cross links of these physical networks.  相似文献   

20.
Mixed protein-based hydrogels have been prepared by blending gelatin (G) with amorphous Bombyx mori silk fibroin (SF) and promoting beta-crystallization of SF via subsequent exposure to methanol or methanol/water solutions. The introduction of beta crystals in SF serves to stabilize the hydrogel network and extend the solidlike behavior of these thermally responsive materials to elevated temperatures beyond the helix-->coil (h-->c) transition of G. In this work, we investigate the swelling and protein release kinetics of G/SF hydrogels varying in composition at temperatures below and above the G h-->c transition. At 20 degrees C, G and G-rich mixed hydrogels display evidence of moderate swelling with negligible mass loss in aqueous solution, resulting in porous polymer matrixes upon solvent removal according to electron microscopy. When the solution temperature is increased beyond the G h-->c transition to body temperature (37 degrees C), these gels exhibit much higher swelling with considerable mass loss due to dissolution and release of G. The extent to which these properties respond to temperature decreases systematically with increasing SF content. The unique temperature- and composition-dependent properties of G/SF hydrogels dictate the efficacy of these novel materials as stimuli-responsive delivery vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号