首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Summary An indigenous strain of blue green microalga, Synechococcus sp., isolated from wastewater, was immobilized onto loofa sponge discs and investigated as a potential biosorbent for the removal of cadmium from aqueous solutions. Immobilization has enhanced the sorption of cadmium and an increase of biosorption (21%) at equilibrium was noted as compared to free biomass. The kinetics of cadmium biosorption was extremely rapid, with (96%) of adsorption within the first 5 min and equilibrium reached at 15 min. Increasing initial pH or initial cadmium concentration resulted in an increase in cadmium uptake. The maximum biosorption capacity of free and loofa immobilized biomass of Synechococcus sp. was found to be 47.73 and 57.76 mg g−1 biomass respectively. The biosorption equilibrium was well described by Langmuir adsorption isotherm model. The biosorbed cadmium was desorbed by washing the immobilized biomass with dilute HCl (0.1 M) and desorbed biomass was reused in five biosorption–desorption cycles without an apparent decrease in its metal biosorption capacity. The metal removing capacity of loofa immobilized biomass was also tested in a continuous flow fixed-bed column bioreactor and was found to be highly effective in removing cadmium from aqueous solution. The results suggested that the loofa sponge-immobilized biomass of Synechococcus sp. could be used as a biosorbent for an efficient removal of heavy metal ions from aqueous solution.  相似文献   

2.
Oscillatoria sp. H1 (Cyanobacteria, microalgae) isolated from Mogan Lake was used for the removal of cadmium ions from aqueous solutions as its dry biomass, alive and heat-inactivated immobilized form on Ca-alginate. Particularly, the effect of physicochemical parameters like pH, initial concentration and contact time were investigated. The sorption of Cd(II) ions on the sorbent used was examined for the cadmium concentrations within the range of 25-250 mg/L. The biosorption of Cd(II) increased as the initial concentration of Cd(II) ions increased in the medium up to 100 mg/L. Maximum biosorption capacities for plain alginate beads, dry biomass, immobilized live Oscillatoria sp. H1 and immobilized heat-inactivated Oscillatoria sp. H1 were 21.2, 30.1, 32.2 and 27.5 mg/g, respectively. Biosorption equilibrium was established in about 1 h for the biosorption processes. The biosorption was well described by Langmuir and Freundlich adsorption isotherms. Maximum adsorption was observed at pH 6.0. The alginate-algae beads could be regenerated using 50 mL of 0.1 mol/L HCl solution with about 85% recovery.  相似文献   

3.
The zinc biosorptive capacity of the brown seaweed Sargassum sp. (Phaeophyceae) was studied in the presence or absence of competing calcium ions, using a continuous system with tubular fixed-bed reactors. In order to detect the effect of calcium on zinc biosorption, a 130 mg/l zinc solution was used, and calcium was added at 50-340 mg/l. The potential zinc biosorptive capacity of the biomass was markedly influenced by the presence of ionic calcium. Zinc sorption decreased with increasing calcium concentrations, as expressed by zinc uptake rates. Calcium was effectively recovered only during the initial stages of the process, as expressed by the decrease in its uptake rates. Calcium uptake rates were also much higher than zinc uptake rates, indicating that calcium was preferentially recovered when compared to zinc.  相似文献   

4.
Biosorption of cadmium by biomass of marine algae   总被引:28,自引:0,他引:28  
Biomass of nonliving, dried brown marine algae Sargassum natans, Fucus vesiculosus, and Ascophyllum nodosum demonstrated high equilibrium uptake of cadmium from aqueous solutions. The metal uptake of cadmium from aqueous solutions. The metal uptake by these materials was quantitatively evaluated using sorption isotherms. Biomass of A. nodosum accumulated the highest amount of cadmium exceeding 100 mg Cd(2+)/g (at the residual concentration of 100 mg Cd/L and pH 3.5), outperforming a commercial ion exchange resin DUOLITE GT-73. A new biosorbent material based on A. nodosum biomass was obtained by reinforcing the algal biomass by formaldehyde cross-linking. The prepared sorbent possessed good mechanical properties, chemical stability of the cell wall polysaccharides and low swelling volume. Desorption of deposited cadmium with 0.1-0.5M HCI resulted in no changes of the biosorbent metal uptake capacity through five subsequent adsorption/desorption cycles. There was no damage to the biosorbent which retained its macroscopic appearance and performance in repeated metal uptake/elution cycles. (c) 1993 Wiley & Sons, Inc.  相似文献   

5.
Copper removal from wastewater using spent-grain as biosorbent   总被引:3,自引:0,他引:3  
Lu S  Gibb SW 《Bioresource technology》2008,99(6):1509-1517
The removal of Cu(II) ions from aqueous solutions using spent-grain was studied. The experimental data fitted the Langmuir isotherm and the maximum adsorption capacity of spent-grain was determined to be 10.47 mg g(-1) dry weight (pH 4.2). Kinetic studies showed the adsorption process followed pseudo second-order rate model. Column studies with synthetic Cu(II) solutions were used to investigate the effects of Cu(II) ion concentration, initial pH, flow rate and the presence of EDTA on the Cu(II) removal performance. When treating the spent-lees, the wastewater from the whisky distilling industry, the reduction of Cu(II) uptake capacity to 77.7% (solution pH adjusted to 4.5 with 1N NaOH) and 31.6% (pH 3.8 without adjustment) was observed compared to Cu(II) uptake capacity when treating synthetic Cu(II) solution. On the basis of the results and that spent-grain is an abundant and by-product from the whisky distilling industry we suggest that it can be economically and effectively applied as a biosorbent for the removal of Cu(II) ions from distilling wastewaters.  相似文献   

6.
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters.  相似文献   

7.
Biosorption is potentially an attractive technology for treatment of wastewater for retaining heavy metals from dilute solutions. This study investigated the feasibility of anaerobic granules as a novel type of biosorbent, for lead, copper, cadmium, and nickel removal from aqueous solutions. Anaerobic sludge supplied from a wastewater treatment plant in the province of Quebec was used. Anaerobic granules are microbial aggregates with a strong, compact and porous structure and excellent settling ability. After treatment of the biomass with Ca ions, the cation exchange capacity of the biomass was approximately 111 meq/100 g of biomass dry weight which is comparable to the metal binding capacities of commercial ion exchange resins. This work investigated the equilibrium, batch dynamics for the biosorption process. Binding capacity experiments using viable biomass revealed a higher value than those for nonviable biomass. Binding capacity experiments using non-viable biomass treated with Ca revealed a high value of metals uptake. The solution initial pH value affected metal sorption. Over the pH range of 4.0-5.5, pH-related effects were not significant. Meanwhile, at lower pH values the uptake capacity decreased. Time dependency experiments for the metal ions uptake showed that adsorption equilibrium was reached almost 30 min after metal addition. It was found that the q(max) for Pb2+, Cd2+, Cu2+, and Ni2+ ions, were 255, 60, 55, and 26 mg/g respectively (1.23, 0.53, 0.87, and 0.44 mmol/g respectively). The data pertaining to the sorption dependence upon metal ion concentration could be fitted to a Langmiur isotherm model. Based on the results, the anaerobic granules treated with Ca appear to be a promising biosorbent for removal of heavy metals from wastewater due to its optimal uptake of heavy metals, its particulate shape, compact porous structure, excellent settling ability, and its high mechanical strength.  相似文献   

8.
The biosorption process for removal of lead, cadmium, and zinc by Citrobacter strain MCM B-181, a laboratory isolate, was characterized. Effects of environmental factors and growth conditions on metal uptake capacity were studied. Pretreatment of biomass with chemical agents increased cadmium sorption efficiency; however, there was no significant enhancement in lead and zinc sorption capacity. Metal sorption by Citrobacter strain MCM B-181 was found to be influenced by the pH of the solution, initial metal concentration, biomass concentration, and type of growth medium. The metal sorption process was not affected by the age of the culture or change in temperature. Equilibrium metal sorption was found to fit the Langmuir adsorption model. Kinetic studies showed that metal uptake by Citrobacter strain MCM B-181 was a fast process, requiring <20 min to achieve >90% adsorption efficiency. The presence of cations reduced lead, zinc, and cadmium sorption to the extent of 11. 8%, 84.3%, and 33.4%, respectively. When biomass was exposed to multimetal solutions, metals were adsorbed in the order Co2+ < Ni2+ < Cd2+ < Cu2+ < Zn2+ < Pb2+. Among various anions tested, only phosphate and citrate were found to hamper metal sorption capacity of cells. Biosorbent beads prepared by immobilizing the Citrobacter biomass in polysulfone matrix exhibited high metal loading capacities. A new mathematical model used for batch kinetic studies was found to be highly useful in prediction of experimentally obtained metal concentration profiles as a function of time. Metal desorption studies indicated that Citrobacter beads could, in principle, be regenerated and reused in adsorption-desorption cycles. In an expanded scale trial, biosorbent beads were found to be useful in removal/recovery of metals such as lead from industrial wastewaters.  相似文献   

9.
In this study, the adsorption properties of two different marine algae (Ulva fasciata (green algae) and Sargassum sp. (brown algae)) were investigated. Equilibrium isotherms and kinetics were studied to evaluate the relative ability of the two algae to sequester Cu(II) from aqueous solutions. The maximum biosorption capacity obtained was 73.5 mg g(-1) for U. fasciata and 72.5 mg g(-1) for Sargassum sp. at a solution pH of 5.5 +/- 0.5. A significant fraction of the total copper(II) uptake was achieved within 30 min. The copper(II) uptake by the biosorbents was best described by pseudo-second-order rate model.  相似文献   

10.
Chen G  Zeng G  Tang L  Du C  Jiang X  Huang G  Liu H  Shen G 《Bioresource technology》2008,99(15):7034-7040
A kind of agricultural waste, the byproduct of brown-rot fungus Lentinus edodes, was used as an efficient biosorbent for the removal of cadmium from water in this paper. The sorption conditions, such as pH, the dose of biomass and the initial concentration of cadmium were examined. Three kinds of adsorption models were applied to simulate the biosorption data. Uptake of cadmium was higher in weak acid condition than in strong acid condition. Nearly no sorption of cadmium occurred when the pH value was lower than 2.5. Biosorption isothermal data could be well simulated by Freundlich model, and then Langmuir and Temkin model. Langmuir simulation of the biosorption showed that the maximum uptake of cadmium was 5.58mmol/g in weak acid condition, which was much higher than many other biosorbents. The exchanged proton was highly related to the uptake of cadmium in weak acid condition. Fourier transform infrared spectrums and energy-dispersive X-ray microanalyzer were used to reveal ion-exchange mechanism between cadmium and the functional groups or participated inorganic metal ions during biosorption.  相似文献   

11.
The adsorption of Cd2+ and Pb2+ on sugar beet pulp (SBP), a low-cost material, has been studied. In the present work, the abilities of native (SBP) to remove cadmium (Cd2+) and lead (Pb2+) ions from aqueous solutions were compared. The (SBP) an industrial by product and solid waste of sugar industry were used for the removal of Cd2+ and Pb2+ ions from aqueous water. Batch adsorption studies were carried out to examine the influence of various parameters such as initial pH, adsorbent dose, initial metal ion concentration, and time on uptake. The sorption process was relatively fast and equilibrium was reached after about 70 min of contact. As much as 70-75% removal of Cd2+ and Pb2+ ions for (SBP) are possible in about 70 min, respectively, under the batch test conditions. Uptake of Cd2+ and Pb2+ ions on (SBP) showed a pH-dependent profile. The overall uptake for the (SBP) is at a maximum at pH 5.3 and gives up to 46.1 mg g(-1) for Cd2+ and at pH 5.0 and gives 43.5 mg g(-1) for Pb2+ for (SBP), which seems to be removed exclusively by ion exchange, physical sorption and chelation. A dose of 8 gL(-1) was sufficient for the optimum removal of both the metal ions. The Freundlich represented the sorption data for (SBP). In the presence of 0.1M NaNO3 the level of metal ion uptake was found to reach its maximum value very rapidly with the speed increasing both with the (SPB) concentration and with increasing initial pH of the suspension. The reversibility of the process was investigated. The desorption of Cd2+ and Pb2+ ions which were previously deposited on the (SBP) back into the deionised water was observed only in acidic pH values during one day study period and was generally rather low. The extent of adsorption for both metals increased along with an increase of the (SBP) dosage. (SBP), which is cheap and highly selective, therefore seems to be a promising substrate to entrap heavy metals in aqueous solutions.  相似文献   

12.
The adsorption of iron(III), lead(II) and cadmium(II) ions onto Schizomeris leibleinii, a green alga, was studied with respect to initial pH, temperature, initial metal ion and biomass concentration to determine the optimum adsorption conditions. Optimum initial pH for iron(III), lead(II) and cadmium(II) ions were 2.5, 4.5 and 5.0 at optimum temperature 30°C, respectively. The initial adsorption rates increased with increasing initial iron(III), lead(II) and cadmium(II) ion concentrations up to 100, 100 and 150 mg l−1, respectively. The Freundlich and Langmuir adsorption isotherms were developed at various initial pH and temperature values. The adsorption of these metal ions to S. leibleinii was investigated in a two-stage mixed batch reactor. The residual metal ion concentrations (Ceq) at equilibrium at each stage for a given ‘quantity of dried algae (X0)/volume of solution containing heavy metal ion (V0)’ ratio were calculated using Freundlich and Langmuir isotherm constants. The experimental biosorption equilibrium data for iron(III), lead(II) and cadmium(II) ions were in good agreement with those calculated by both Freundlich and Langmuir models. The adsorbed iron(III), lead(II) and cadmium(II) ion concentrations increased with increasing X0/V0 ratios while the adsorbed metal quantities per unit mass of dried algae decreased.  相似文献   

13.
The cadmium removing capacity of a biosorbent Calotropis procera, a perennial wild plant, is reported here. The biomass was found to possess high uptake capacity of Cd(II). Adsorption was pH dependent and the maximum removal was obtained at two different pH i.e. pH 5.0 and 8.0. Maximum biosorption capacity in batch and column mode was found to be 40 and 50.5 mg/g. The adsorption equilibrium (> or =90% removal) was attained within 5 min irrespective of the cadmium ion concentration. Interfering ions viz. Zn(II), As(III), Fe(II), Ni(II) interfered only when their concentration was higher than the equimolar ratio. The Freundlich isotherm best explained the adsorption, yet the monolayer adsorption was also noted at lower concentrations of Cd(II). The FTIR analysis indicates the involvement of hydroxyl (-OH), alkanes (-CH), nitrite (-NO(2)), and carboxyl group (-COO) chelates in metal binding. The complete desorption of the cadmium was achieved by 0.1M H(2)SO(4) and 0.1M HCl. The C. procera based Cd(II) removal technology appears feasible.  相似文献   

14.
Chromium(VI) is present in several industrial wastewaters and it can cause health and environmental hazards above certain concentrations. Equilibrium studies have shown the feasibility of using Sargassum sp. algae for chromium removal from aqueous solutions by biosorption. However, for the design and operation of chromium biosorption processes, dynamic flow studies are required. The objective of the study was to examine chromium(VI) removal from an aqueous solution using a packed-bed column with Sargassum sp. algae as a biosorbent. The dynamic behavior of the biosorption column was investigated through experiments and the influence of operating conditions, such as initial chromium concentration, flow rate and amount of biosorbent, on the column removal capacity have been analyzed using the factorial design methodology. The capacity of removal obtained at optimum conditions was 19.06 mg of metal/g biosorbent.  相似文献   

15.
A biosorbent was prepared by immobilizing and culturing Zoogloea ramigera cells in calcium alginate capsules to high density. The biosorbent (the cell and its exopolysaccharide "Zooglan") along with the [calcium] alginate is known to be responsible for cadmium removal. The dry weight of the biosorbent reached 107 g/L after 3 days of cultivation and 220 g/L after 5 days based on the core volume of a 2.0-mm diameter capsule used. The biosorbents were completely contained in the core of the capsule where the cells grew preferentially near the shell of the capsules while the polymer distributed homogeneously in the core. The specific cadmium uptake by the capsule biosorbent was 1.9 mg/g adsorbent at an initial cadmium concentration of 3 mg/L. This is 1.24 times more than the specific cadmium uptake by the 1.8-mm beads prepared under a comparable condition. The capsules crosslinked with 1% triethylene tetramine and 1% glutamic dialdehyde solutions were superior to the uncrosslinked capsules in mechanical strength. The crosslinked capsules maintained their mechanical strength and adsorption/desorption capacity even after 30 cycles of repeated use. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

16.
Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans   总被引:3,自引:0,他引:3  
The study was aimed to quantify the Cr sorption ability of powdered biomass of Rhizopus nigricans at the best operating conditions. The influence of solution pH, agitation, Cr (VI) concentration, biomass dosage, contact time, biomass particle size and temperature were studied. The optimum pH for biosorption of Cr (VI) was found to be 2.0. Higher adsorption percentage was noted at lower initial concentrations of Cr ions, while the adsorption capacity of the biomass increased with increasing concentration of ions. Optimum biomass dosage was observed as 0.5% (w/v). More than 75% of the ions were removed within 30 min of contact and maximum removal was obtained after 8 h. Biomass particles of smaller size (90 microm) gave maximum adsorption (99.2%) at 100 mg/l concentration. The adsorption capacity increased with increase in temperature and agitation speed and the optimum were determined as 45 degrees C at 120 rpm. Freundlich and Langmuir isotherms were used to evaluate the data and the regression constants were derived. The adsorption rate constant values (Kad) were calculated for different initial concentration of Cr ions and the sorption was found to be higher at lower concentration (100 mg/l) of metal ion.  相似文献   

17.
A unicellular green microalga, Chlorella sorokiniana, was immobilized on loofa (Luffa cylindrica) sponge and successfully used as a new biosorption system for the removal of lead(II) ions from aqueous solutions. The biosorption of lead(II) ions on both free and immobilized biomass of C. sorokiniana was investigated using aqueous solutions in the concentration range of 10–300 mg/L. The biosorption of lead(II) ions by C. sorokiniana biomass increased as the initial concentration of lead(II) ions increased in the medium. The maximum biosorption capacity for free and immobilized biomass of C. sorokiniana was found to be 108.04 and 123.67 mg lead(II)/g biomass, respectively. The biosorption kinetics were found to be fast, with 96 % of adsorption within the first 5 min and equilibrium reached at 15 min. The adsorption of lead(II) both by free and immobilized C. sorokiniana biomass followed the Langmuir isotherm. The biosorption capacities were detected to be dependent on the pH of the solution; and the maximum adsorption was obtained at a solution pH of about 5. The effect of light metal ions on lead(II) uptake was also studied and it was shown that the presence of light metal ions did not significantly affect lead(II) uptake. The loofa sponge‐immobilized C. sorokiniana biomass could be regenerated using 0.1 M HCl, with up to 99 % recovery. The desorbed biomass was used in five biosorption‐desorption cycles, and no noticeable loss in the biosorption capacity was observed. In addition, fixed bed breakthrough curves for lead(II) removal were presented. These studies demonstrated that loofa sponge‐immobilized biomass of C. sorokiniana could be used as an efficient biosorbent for the treatment of lead(II) containing wastewater.  相似文献   

18.
A preliminary study on the removal of cadmium by nonmetabolizing live biomass of Rhizopus oligosporus from aqueous solution is presented. The equilibrium of the process was in all cases well described by the Langmuir sorption isotherm, suggesting that the process was a chemical, equilibrated and saturable mechanism which reflected the predominantly site-specific mechanism on the cell surface. A curve of Scatchard transformation plots reflected the covalent nature of Cd2+ adsorption by the cells. The maximum cadmium uptake capacities were 34.25 mg/g for immobilized cells and 17.09 mg/g for free cells. Some factorial experiments in shake flasks were performed in order to investigate the effect of different initial cadmium concentrations and biomass concentrations on the equilibrium. Experimental results showed a reverse trend of the influence of the immobilized and free biomass concentration on the cadmium specific uptake capacity. The immobilized cells had a higher specific cadmium uptake capacity with increasing biomass concentrations compared to free cells. In a bioreactor, the cadmium uptake capacity of immobilized cells (qmax = 30.1–37.5 mg/g) was similar to that observed in shake flask experiments (qmax = 34.25 mg/g) whereas with free cells the bioreactor qmax of 4.8–13.0 mg/g; was much lower than in shake flasks (qmax = 17.09 mg/g), suggesting that cadmium biosorption by immobilized cells of R. oligosporus might be further improved in bigger reactors. EDAX and transmission electron microscopic experiments on the fungal biomass indicated that the presence of Cd2+ sequestrated to the cell wall was due to bioadsorption.  相似文献   

19.
Strontium (Sr) ions in aqueous solutions could be adsorbed by root tissue powders of Amaranthus spinosus, a common weed found in the fields. The adsorption isotherm could be fitted by either the Langmuir or the Freundlich model with the maximum adsorption capacity being 12.89 mg/g from the Langmuir isotherm. The maximum adsorption capacity of the biosorbent decreased with increasing temperature, whereas alkaline pretreatment enhanced the adsorption capacity 1.9 fold. Alginate gel beads (1 mm diameter) containing the root tissue powders were prepared and packed in a column for continuous adsorption/desorption of Sr in solution. Efficient desorption of Sr could be carried out with 0.1 CaCl2 to give a concentrated Sr solution with 94% recovery.  相似文献   

20.
耐铅镉菌株的分离鉴定及其吸附能力   总被引:1,自引:0,他引:1  
堆肥中添加生物钝化剂是当前降低粪便中重金属生物毒性最为有效的方式之一,为了进一步提高其钝化重金属的能力,文中获得了复合重金属高耐性的钝化剂菌株,并探究其生物学特性和吸附特征。采集猪粪堆肥样品并在改良的牛肉膏培养基中分离和筛选耐铅又耐镉的高耐性菌株,通过形态结合分子生物学鉴定该菌株。该菌株分别在不同pH、温度和盐浓度条件下培养获得其最适的生长条件,进而在该条件下分析其对铅镉吸附的特性。结果获得一株耐铅浓度为600 mg/L、镉浓度为120 mg/L的铅镉复合耐性菌株SC19,该菌株为西地西菌属,其最适生长环境为pH值7.0、温度37℃、盐浓度0.5%。培养36 h的稳定期SC19菌株在吸附时间30min时铅的去除率最高,对铅的最大去除率和吸附量分别为60.7%和329.13mg/g;培养8h的对数期在吸附时间30min时镉的去除率最高,对镉的最大去除率和吸附量分别为51.0%和126.19 mg/g。红外光谱分析显示,SC19菌株对铅镉离子的吸附主要是细胞表面的多种活性基团与金属离子发生络合作用。该研究揭示了SC19菌株有较好的二价态铅镉离子吸附能力,可为生物钝化重金属提供重要的微生物种质资源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号