首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high levels of tannins in many tree leaves are believed to cause decreased insect performance, but few controlled studies have been done. This study tested the hypothesis that higher foliar tannin levels produce higher concentrations of semiquinone radicals (from tannin oxidation) in caterpillar midguts, and that elevated levels of radicals are associated with increased oxidative stress in midgut tissues and decreased larval performance. The tannin-free leaves of hybrid poplar (Populus tremula × P. alba) were treated with hydrolyzable tannins, producing concentrations of 0%, 7.5% or 15% dry weight, and fed to Lymantria dispar caterpillars. As expected, larvae that ingested control leaves contained no measurable semiquinone radicals in the midgut, those that ingested 7.5% hydrolyzable tannin contained low levels of semiquinone radicals, and those that ingested 15% tannin contained greatly increased levels of semiquinone radicals. Ingested hydrolyzable tannins were also partially hydrolyzed in the midgut. However, increased levels of semiquinone radicals in the midgut were not associated with oxidative stress in midgut tissues. Instead, it appears that tannin consumption was associated with increased metabolic costs, as measured by the decreased efficiency of conversion of digested matter to body mass (ECD). Decreased ECD, in turn, decreased the overall efficiency of conversion of ingested matter to body mass (ECI). Contrary to our hypothesis, L. dispar larvae were able to maintain similar growth rates across all tannin treatment levels, in part, because of compensatory feeding. We conclude that hydrolyzable tannins act as “quantitative defenses” in the sense that high levels appear to be necessary to increase levels of semiquinone radicals in the midguts of caterpillars. However, these putative resistance factors are not sufficient to decrease the performance of tannin-tolerant caterpillars such as L. dispar.  相似文献   

2.
Polyphenol oxidase (PPO) is commonly believed to function as an effective antiherbivore defense in plants. PPO is induced in plants following herbivory, and insect performance is often negatively correlated with PPO levels. However, induced defenses create numerous changes in plants, and very little work has been done to test the direct effects of PPO on insect herbivores separately from other changes. This study examined the impacts of high levels of PPO on the performance of two species of tree-feeding caterpillars (Lymantria dispar and Orgyia leucostigma) on poplar. Transgenic PPO-overexpressing poplar (Populus tremula × Populus alba) was used as a source of elevated-PPO leaves, thereby controlling for the multiple effects of induction. In addition, the impacts of treating poplar foliage with high levels of purified mushroom PPO were examined on the two caterpillar species. Contrary to expectation, in several cases increased PPO levels had no significant effect on insect consumption or growth rates. Although one of the mechanisms by which PPO is believed to impact herbivores is via increased oxidative stress, the ingestion of large amounts of PPO had little or no effect on semiquinone radical and oxidized protein levels in the gut contents of lymantriid caterpillars. PPO activity in caterpillars is likely limited by the low oxygen and high ascorbate levels commonly found in their gut contents. This study questions whether induced PPO functions as an effective post-ingestive defense against tree-feeding caterpillars, and indicates that controlled, mechanistic studies are needed in other plant–herbivore systems to test for a direct effect of PPO on insect performance.  相似文献   

3.
Phenolic compounds are commonly regarded as the main chemical defenses of deciduous woody plants against insects. To examine how indices of leaf maturation (water content, toughness, and sugar/protein ratio) modified larval consumption and growth relative to phenolics and phenolic-related leaf traits, we measured consumption and growth of fourth-instar Epirrita autumnata (Bkh.) (Lepidoptera: Geometridae) larvae on three different days on young, normal, and mature leaves, respectively, from the same mountain birch (Betula pubescens ssp. czerepanovii (Orlova) Hämet-Ahti) trees. The larvae achieved the same growth rates on young and normal leaves, but had to consume 40% more on the latter. On more mature leaves, larval growth was poorer and was positively correlated with sugar/protein ratios (although the ratio peaked at that time). Indices of leaf maturation correlated with several phenolics in data pooled over the three study days, but poorly in any individual day. Similarly, in the pooled data, larval consumption and growth correlated with several leaf traits, but correlations between leaf and insect traits were few on any of the three days, and no trait was significant on each of the three days.We next examined whether variation in the maturation indices modified the associations of phenolics with insect consumption and growth. When interactions between phenolics and leaf maturation indices were taken into account, the number of phenolic compounds displaying significant associations with insect traits more than doubled. The relative importance of interactive versus direct associations increased with leaf maturation: on young leaves five phenolics showed direct and eleven interactive associations with insect traits, while in mature leaves we found two phenolics to display direct and thirteen phenolics interactive associations. Leaf water content, either alone or together with toughness and sugar/protein ratio, generally explained more of the variance in Epirrita growth (up to 59%) than any phenolic or phenolic-related trait alone (highest value 20%). Including interactive effects between phenolics and indices of leaf maturation in the model increased the proportion explained of variance in larval growth between 49 and 73%. Maturation indices explained 0 to 23% of variance in consumption, and the phenolic compound with the highest (positive!) correlation alone up to 28%, but taking into account interactions between phenolics and maturation indices raised the degree of explanation much (namely, 32 to 53%) over that explained by indices of leaf maturation alone. This indicates strong interactive effects on consumption between phenolics and indices of leaf maturation.  相似文献   

4.
Hydrogen peroxide formed during the course of the copper(II)-catalysed oxidation of cysteamine with oxygen was continuously determined by a peroxidase (POD)-catalysed luminol chemiluminescence (CL) method. Horseradish peroxidase (HRP), lactoperoxidase (LPO) and Arthromyces ramosus peroxidase (ARP) were used as a CL catalyst. The respective PODs gave specific CL intensity-time profiles. HRP caused a CL delay, and ARP gave a time-response curve which followed the production rate of H2O2. LPO gave only a weak CL flash which decayed promptly. These differences of CL response curves could be explained in terms of the different reactivities of PODs for superoxide anion and the different formation rate of luminol radicals in the peroxidation of luminol catalysed by POD.  相似文献   

5.
In this study we tested the effects of rapid induced resistance of the silver birch, Betula pendula, on the performance and immune defense of the gypsy moth, Lymantria dispar. We also measured the effects of defoliation on the concentrations of plant secondary metabolites, particularly on phenolics and terpenoids. It was found that severe natural defoliation (by moth larvae) of silver birch led to an increase in lipophilic flavonoids on the leaf surface. The concentration of some simple phenolics and monoterpenes (linalool and geraniol) also increased, while that of several glycosides of quercetin decreased. The female pupal weights and survival rates of moths decreased, and larval development time increased, when the insects fed on defoliated trees. However, the feeding of caterpillars with the leaves of defoliated trees led to an increase in lysozyme-like activity in their hemolymph, with an increase in their ability to encapsulate potential parasites. Our data show that the silver birch deploys a rapid chemical defense against gypsy moth larvae. We suggest that lipophilic flavonoids are important compounds in the direct silver birch defense against L. dispar caterpillars. The increased strength of immune defense of insects exposed to trees that had deployed a rapid induced resistance may be an adaptation of the herbivores to resist the rising density of parasites when host population density is high.  相似文献   

6.
DNA methylation occurs mostly at the C5 position of dinucleotide symmetric CpG sites in genomic DNA. A balance is maintained in the plant genome between DNA methylation mediated by RNA-directed DNA methylation (RdDM) and DNA demethylation mediated by the DEMETER (DME) protein family and REPRESSOR OF SILENCING (ROS1). We used double-stranded RNA (dsRNA) silencing to suppress ROS1 protein expression in ‘Nanlin895’ (Populus deltoides × Populus euramericana ‘Nanlin895’). Leaves of WT and transformant poplars revealed more symmetric methylation on CpG sites than roots and stems. In addition, leaves of transformant poplars revealed more methylated CpG sites in both 5.8S rDNA and histone H3 compared to WT types via 0, 50 and 100 mM NaCl treatments. In asymmetric methylation sites, transformant poplars exhibited more methylated CpHpG and CpHpH contexts than WT poplars. On the other hand, hypermethylation induced by PtROS1-RNAi construct resulted in pleiotropic phenotypic changes in transgenic poplars. The percentage of wavy leaves was increased maximum by ~45% in transgenic poplars. Also, the number of leaves was increased by ~200 number in transformants. Furthermore, shooting (%) and rooting (%) was decreased in transgenic poplars versus WT.  相似文献   

7.
We examined changes in the intensity of non-ant defenses of three myrmecophytic Macaranga species before and after the initiation of symbiosis with ants in a Bornean dipterocarp forest. The intensities of non-ant defenses at different growth stages of each Macaranga species were estimated by measuring the survival rate of larvae of the common cutworm, Spodoptera litura, when the larvae were fed on fresh leaves from seedlings (saplings) at three growth stages of each Macaranga species. In all species, the intensity of the non-ant defenses when seedlings had not yet received symbiont foundress queens was significantly higher than that after ant defense was well established. These results support the hypothesis that myrmecophytic Macaranga may defend themselves sufficiently via non-ant defenses before beginning symbiosis with ants and that the intensity of non-ant defenses may decrease as the symbiont colony size increases. We suggest that, where the status of myrmecophytism changes as plant–ant colonies grow, the decrease in the intensity of non-ant defenses which we detected after the establishment of ant colonies might generate an optimal allocation of metabolic cost to ant and non-ant defenses under resource limitations. We also measured leaf toughness, which is considered to be one of the most important agents of non-ant defenses against herbivorous insects, at different plant stages to assess its contribution to the change in the intensity of non-ant defenses after ant colonization. However, we found no evidence that changes in leaf toughness have a significant effect on the change in balance of the two antiherbivory mechanisms. Received: February 2, 2001 / Accepted: August 21, 2001  相似文献   

8.
In greenhouse experiments, we compared putative biotic, chemical, physical and phenological defenses of six myrmecophytic Cecropia species cultivated under high and low nutrient regimes. We tested the intraspecific predictions of the C:N balance hypothesis for a broader range of defenses than included in other studies to date. Treatment effects on defenses appear to depend on the nutrient constituents of those defenses. Only strictly carbon-based defenses such as tannins and phenolics reached higher concentrations at the lower nutrient level. The production of glycogen-rich and membrane-bound Müllerian body ant rewards (MBs) increased with greater levels of both nutrients (this study) and light (Folgarait and Davidson 1994). In contrast, lipid- and amino acid-rich pearl body food rewards (PBs) were produced in greater numbers under conditions of high nutrient levels (this study) and low light (Folgarait and Davidson 1994), both of which should have contributed to a relative excess of nitrogen. Nutrient effects on toughness and leaf expansion rates (perhaps serving as phenological defenses) were inconsistent with the predictions of the C:N balance hypothesis. Mature leaves are protected principally by chemical and physical defenses, and new leaves, by biotic defenses. As in a previous study, interspecific comparisons agreed with the resource availability theory of plant defense. Plant investment in immobile defenses (tannins and phenolics, and leaf toughness), and in a defense with high initial construction costs (trichilia differentiated to produce MBs) were greater in each of three comparatively slow-growing gap Cecropia typical of small openings in primary forest, than in closely related and fast-growing pioneer species of large-scale disturbances (riparian edge and land slips). In contrast, both production of PBs (with negligible initial construction costs) and leaf expansion rates were greater in pioneers than in gap species. Rapid onset of biotic defenses during new leaf development (earlier in pioneers) may reduce new leaf herbivory in all species.  相似文献   

9.
Induced defenses occur predominately in young, developing plant tissues that rely upon carbohydrate import to support their growth and development. To test the hypothesis that the induced production of carbon-based defenses is dependent upon photoassimilate import, we examined the response of developing leaves of hybrid poplar (Populus deltoides 2 P. nigra) saplings to wounding by gypsy moth caterpillars (Lymantria dispar L.) and exogenous jasmonic acid (JA). Growth rates, condensed tannin contents and acid invertase activities were measured for individual leaves and the translocation of 13C-labeled resources between orthostichous source-sink pairs was quantified. Results showed a substantial increase in the activity of cell wall invertase in sink leaves wounded by gypsy moth caterpillars and treated with JA. JA-induced sink leaves also imported 3-4 times as much 13C-labeled carbon from orthostichous source leaves relative to controls and allocated a significant portion of this imported 13C to condensed tannin biosynthesis. Reduced carbohydrate flow to these leaves, caused by source leaf removal, resulted in reduced condensed tannin levels and the emergence of a growth-defense tradeoff. These results indicate that (1) induced sink strength is elicited by insect wounding and JA application in hybrid poplar foliage, (2) imported resources are allocated to the production of carbon-based defenses, and (3) the level of induced defense in leaves can be constrained by the ability of leaves to import carbohydrates from source tissues. Together, these results suggest that within-canopy variations in induced resistance may arise in part because of uneven distribution of resources to induced foliage.  相似文献   

10.
Jasmonates such as jasmonic acid (JA) are plant‐signaling compounds that trigger induced resistance (IR) to a broad range of arthropod herbivores. JA‐dependent defenses are known to reduce the growth and survivorship of many chewing insects, but their impact on piercing–sucking insects such as aphids has not been extensively investigated. In this study, induced resistance was activated in tomato (Lycopersicon esculentum Mill) (Solanaceae) using a foliar application of synthetic JA, and control plants were treated with carrier solution. The life parameters of individual potato aphids and their progeny (Macrosiphum euphorbiae Thomas) (Hemiptera: Aphididae) were evaluated on the unsprayed leaves of plants in order to access the systemic effects of the foliar treatments. IR significantly reduced the longevity and net reproduction of adult aphids, as well as the percentage of juveniles to survive to maturity. These results indicate that JA application induces systemic defenses in tomato that have a direct negative impact on aphid survivorship. This study also examined aphid honeydew excretion, in order to evaluate the potential influence of induced resistance on aphid feeding behavior. The average honeydew production per aphid was comparable on plants with or without JA treatment, indicating that JA‐dependent defenses did not deter feeding. This suggests that the observed effects of JA on aphid survivorship were due to antibiotic rather than antixenotic factors. In addition to studying the effects of JA treatment on a tomato cultivar that is susceptible to aphids, this study also examined the effects of exogenous application of JA on tomato plants that carry the aphid resistance gene, Mi‐1.2. JA application did not significantly enhance or inhibit aphid control on resistant tomato. These findings expand our understanding of the effects of JA‐dependent defenses on piercing–sucking insects, and of the potential interactions between induced resistance and R‐gene mediated aphid resistance in tomato.  相似文献   

11.
Abstract The effects of elevated CO2 on foliar chemistry of two tree species (Populus pseudo‐simonii Kitag. and Betula platyphylla) and on growth of gypsy moth (Lymantria dispar L.) larvae were examined. Furthermore, we focused on the comparison of results on the growth responses of larvae obtained from two methods of insect rearing, the no‐choice feeding trial performed in the laboratory or in situ in open‐top chambers. On the whole, both primary and secondary metabolites in the leaves of the two tree species were significantly affected by main effects of time (sampling date), CO2 and species. Elevated CO2 significantly increased the C : N ratio and concentrations of the soluble sugar, starch, total nonstructural carbohydrates, total phenolics and condensed tannins, but significantly decreased the concentration of nitrogen. Higher contents of total phenolics and condensed tannins were detected in the frass of larvae reared in elevated CO2 treatments. Overall, the growth of gypsy moth larvae were significantly inhibited by elevated CO2 and CO2‐induced changes in leaf quality. Our study did not indicate the two methods of insect rearing could influence the direction of effects of elevated CO2 on the growth of individual insects; however, the magnitude of negative effects of elevated CO2 on larval growth did differ between the two insect rearing methods, and it seems that the response magnitude was also mediated by larval age and host plant species.  相似文献   

12.
How plant species diversity affects traits conferring herbivore resistance (e.g., chemical defenses), as well as the mechanisms underlying such effects, has received little attention. One potential mechanism for the effect of diversity on plant defenses is that increased plant growth at high diversity could lead to reduced investment in defenses via growth–defense trade‐offs. We measured tree growth (diameter at breast height) and collected leaves to quantify total phenolics in 2.5‐year‐old plants of six tropical tree species (= 597 plants) in a young experimental plantation in southern Mexico. Selected plants were classified as monocultures or as polycultures represented by mixtures of four of the six species examined. Tree species diversity had a significant negative effect on total phenolics, where polycultures exhibited a 13 percent lower mean concentration than monocultures. However, there was marked variation in the effects of diversity on defenses among tree species, with some species exhibiting strong reductions in phenolic levels in mixtures, whereas others were unresponsive. In addition, tree species diversity had no effect on growth, nor was the negative effect of diversity on chemical defenses mediated by a growth–defense trade‐off. These results demonstrate that tree diversity can alter investment in chemical defenses in long‐lived tree species but that such effect may not always be under strong control by plant endogenous resource allocation trade‐offs. Regardless of the underlying mechanism, these findings have important implications for predicting effects on consumers and ecosystem function.  相似文献   

13.
Phytophagous insects must contend with numerous secondary defense compounds that can adversely affect their growth and development. The gypsy moth (Lymantria dispar) is a polyphagous herbivore that encounters an extensive range of hosts and chemicals. We used this folivore and a primary component of aspen chemical defenses, namely, phenolic glycosides, to investigate if bacteria detoxify phytochemicals and benefit larvae. We conducted insect bioassays using bacteria enriched from environmental samples, analyses of the microbial community in the midguts of bioassay larvae, and in vitro phenolic glycoside metabolism assays. Inoculation with bacteria enhanced larval growth in the presence, but not absence, of phenolic glycosides in the artificial diet. This effect of bacteria on growth was observed only in larvae administered bacteria from aspen foliage. The resulting midgut community composition varied among the bacterial treatments. When phenolic glycosides were included in diet, the composition of midguts in larvae fed aspen bacteria was significantly altered. Phenolic glycosides increased population responses by bacteria that we found able to metabolize these compounds in liquid growth cultures. Several aspects of these results suggest that vectoring or pairwise symbiosis models are inadequate for understanding microbial mediation of plant–herbivore interactions in some systems. First, bacteria that most benefitted larvae were initially foliar residents, suggesting that toxin-degrading abilities of phyllosphere inhabitants indirectly benefit herbivores upon ingestion. Second, assays with single bacteria did not confer the benefits to larvae obtained with consortia, suggesting multi- and inter-microbial interactions are also involved. Our results show that bacteria mediate insect interactions with plant defenses but that these interactions are community specific and highly complex.  相似文献   

14.
Kudo  Gaku 《Plant Ecology》2003,169(1):61-69
Variations in leaf traits (toughness, total nitrogen and total phenolic concentrations) and susceptibility to herbivory in Salix miyabeana were studied among individual trees within a population under field conditions. Leaf quality clearly decreased as season progressed, i.e. increases in leaf toughness and total phenolics and decrease in leaf nitrogen. Seasonal pattern and extent of herbivore attack were similar between years. Significant correlation between leaf traits and susceptibility to herbivore attack was detected, while effects of sex and plant size on leaf traits and herbivory were less clear. There was a negative correlation between total nitrogen and total phenolics, and a positive correlation between leaf toughness and total phenolics among trees. Trees with high quality leaves tended to suffer from frequent herbivore attack and leaf damage. Such a clear relationship between leaf traits and susceptibility to herbivory may be related with a life-history strategy of willows, which are rapid-growing pioneer species and generally respond to herbivorous damage not by induced resistance but by compensative growth. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The efficient aquisition of nutrients from leaves by insect herbivores increases their nutrient assimilation rates and overall fitness. Caterpillars of the gypsy moth (Lymantria dispar L.) have high protein assimilation efficiencies (PAE) from the immature leaves of trees such as red oak (Quercus rubra) and sugar maple (Acer saccharum) (71–81%) but significantly lower PAE from their mature leaves (45–52%). By contrast to this pattern, both PAE and carbohydrate assimilation efficiencies (CAE) remain high for L. dispar larvae on the mature leaves of poplar (Populus alba × Populus tremula) grown in greenhouse conditions. The present study tests two alternative hypotheses: (i) outdoor environmental stresses cause decreased nutrient assimilation efficiencies from mature poplar leaves and (ii) nutrients in the mature leaves of trees in the poplar family (Salicaceae) remain readily available for L. dispar larvae. When poplar trees are grown in ambient outdoor conditions, PAE and CAE remain high (approximately 75% and 78%, respectively) in L. dispar larvae, in contrast to the first hypothesis. When larvae feed on the mature leaves of species in the Salicaceae [aspen (Populus tremuloides), cottonwood (Populus deltoides), willow (Salix nigra) and poplar], PAE and CAE also remain high (68–76% and 72–92%, respectively), consistent with the second hypothesis. Larval growth rates are strongly associated with protein assimilation rates, and more strongly associated with protein assimilation rates than with carbohydrate assimilation rates. It is concluded that tree species in the Salicaceae are relatively high‐quality host plants for L. dispar larvae, in part, because nutrients in their mature leaves remain readily available.  相似文献   

16.
Folivorous insect responses to elevated CO2-grown tree species may be complicated by phytochemical changes as leaves age. For example, young expanding leaves in tree species may be less affected by enriched CO2-alterations in leaf phytochemistry than older mature leaves due to shorter exposure times to elevated CO2 atmospheres. This, in turn, could result in different effects on early vs. late instar larvae of herbivorous insects. To address this, seedlings of white oak (Quercus alba L.), grown in open-top chambers under ambient and elevated CO2, were fed to two important early spring feeding herbivores; gypsy moth (Lymantria dispar L.), and forest tent caterpillar (Malacosoma disstria Hübner). Young, expanding leaves were presented to early instar larvae, and older fully expanded or mature leaves to late instar larvae. Young leaves had significantly lower leaf nitrogen content and significantly higher total nonstructural carbohydrate:nitrogen ratio as plant CO2 concentration rose, while nonstructural carbohydrates and total carbon-based phenolics were unaffected by plant CO2 treatment. These phytochemical changes contributed to a significant reduction in the growth rate of early instar gypsy moth larvae, while growth rates of forest tent caterpillar were unaffected. The differences in insect responses were attributed to an increase in the nitrogen utilization efficiency (NUE) of early instar forest tent caterpillar larvae feeding on elevated CO2-grown leaves, while early instar gypsy moth larval NUE remained unchanged among the treatments. Later instar larvae of both insect species experienced larger reductions in foliage quality on elevated CO2-grown leaves than earlier instars, as the carbohydrate:nitrogen ratio of leaves substantially increased. Despite this, neither insect species exhibited changes in growth or consumption rates between CO2 treatments in the later instar. An increase in NUE was apparently responsible for offsetting reduced foliar nitrogen for the late instar larvae of both species.  相似文献   

17.
Little is known about antiherbivore defenses in non‐myrmecophyte Cecropia trees. We compare two non‐myrmecophyte CecropiaCecropia sciadophylla and Cecropia tacuna—with Cecropia membranacea, a myrmecophyte. High levels of chemical defenses in young leaves and physical toughness of mature leaves compensate for the absence of mutualistic ants in C. sciadophylla. Some C. tacuna trees produce trichilia and Müllerian bodies suggesting it has lost a mutualism with ants.  相似文献   

18.
19.
  1. Leaf shelter construction by herbivorous insects can improve leaf quality, sometimes changing resultant herbivory. In two experiments in a Missouri (USA) deciduous forest we quantified the impact of leaf tie construction and changes to leaf quality on subsequent leaf damage.
  2. First, using eight Quercus species, we compared damage to single leaves versus experimental leaf ties that had been stocked with either Pseudotelphusa quercinigracella (Gelechiidae) or Psilocorsis cryptolechiella (Depressariidae) to determine how initial leaf quality (total phenolics) influenced damage caused by shelter inhabitants. Skeletonization by leaf tying caterpillars and leaf edge chewing by free feeding species were 12.2× and 1.3× greater on tied than on non-tied leaves, respectively. July and September leaf phenolic content had a slight positive effect on the probability of skeletonization, none on the probability of edge damage, and a weakly positive or negative effect on the intensity of skeletonization and edge damage, depending on leaf position.
  3. Second, we created experimental leaf ties, protected from herbivores, on the same Quercus species to determine whether tie formation changes leaf quality (total phenolics, nitrogen, water, toughness). Tie formation decreased phenolics, but this change was predicted to add only 0.8% leaf area loss.
  4. Synthesis. Herbivory increased dramatically when leaves were in ties, with the effect mostly due to the tie itself rather than a change in leaf quality. We predict that the advantages of building and using leaf ties in this system are more likely to be escape from natural enemies and changes in abiotic factors.
  相似文献   

20.
Brunt C  Read J  Sanson GD 《Oecologia》2006,148(4):583-592
Developing leaves that are soft, with high concentrations of resources, can be particularly vulnerable to herbivore damage. Since a developing leaf cannot be very tough, given the constraints of cell expansion, the major form of protection is likely to be chemical defence. We investigated changes in concentration of herbivore resources (protein, carbohydrates and water) and putative defences (total phenolics, tannin activity, cyanogenic glycosides, alkaloids, cell wall, and leaf mechanics) across five leaf development stages of the soft-leaved Toona ciliata M. Roem. and the tough-leaved Nothofagus moorei (F. Muell.) Krasser. Chemical defences were predicted to be more highly developed in young than expanded leaves of both species, and to decline more in expanded leaves of N. moorei, which become tough and strong at maturity, than in the softer expanded leaves of T. ciliata. Resources and defences were dynamic within the developing leaves. Highest concentrations of protein were recorded in young leaves in both species, and highest levels of non-structural carbohydrate were recorded in young leaves of T. ciliata. Allocation to defence varied in both amount and type across leaf stages. In T. ciliata, there was an increase in chemical defence in expanded leaves (tannin activity, alkaloids). However, in N. moorei, increasing strength and toughness of developing leaves coincided with decreasing chemical defence, consistent with our hypothesis. For phenolics, this decrease was partly due to dilution by cell wall, but cyanogenic glycosides were present in young leaves and absent in fully mature leaves. These results are consistent with leaf toughness acting as an effective anti-herbivore defence, thereby reducing the need for investment in chemical defence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号