首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of modification of native cysteines present in squid giant axon Na channels with methanethiosulfonates. We find that intracellular, but not extracellular, perfusion of axons with positively charged [(2-trimethylammonium)-ethyl]methanethiosulfonate (MTSET), or 3(triethylammonium)propyl]methanethiosulfonate (MTS-PTrEA) irreversibly reduces sodium ionic (INa) and gating (Ig) currents. The rate of modification of Na channels was dependent on the concentration of the modifying agent and the transmembrane voltage. Hyperpolarized membrane potentials (e.g., -110 mV) protected the channels from modification by MTS-PTrEA. In addition to reducing the amplitudes of INa and Ig, MTS-PTrEA also altered their kinetics such that the remaining INa did not appear to inactivate, whereas Ig was made sharper and declined to baseline more quickly. The shape and amplitude of Ig after modification of channels with MTS-PTrEA appeared to be "charge-immobilized," as if the modified channels were inactivated. MTS-PTrEA did not affect INa or Ig when inactivation was removed by internal perfusion of the axon with pronase. In addition, we find that the steady-state inactivation curve of modified Na channels is made much shallower and is markedly shifted to hyperpolarized potentials. The rates of activation, deactivation, or open-state inactivation were not altered in MTS-PTrEA-modified channels. The uncharged sulfhydryl reagent methymethanethiosulfonate (MMTS) did not affect either INa or Ig, but prevented the irreversible effects of MTS-PTrEA or MTSET on Na channels. It is proposed that the positively charged methanethiosulfonates MTS-PTrEA and MTSET modify a native internal cysteine(s) in squid Na channels, and by doing so promote inactivation from closed states, resulting in charge immobilization and reduction of INa.  相似文献   

2.
A single suction microelectrode voltage-clamp technique was used to study the actions of lanthanum ions (La3+) on ionic currents in single cells isolated from bullfrog right atrium. La3+, added as LaCl3, blocked the "slow" inward Ca2+ current (ICa) in a dose-dependent fashion; 10(-5) M produced complete inhibition. This effect was best fitted by a dose-response curve that was calculated assuming 1:1 binding of La3+ to a site having a dissociation constant of 7.5 x 10(-7) M. La3+ block was reversed (to 90% of control ICa) following washout and, in the presence of 10(-5) M La3+, was antagonized by raising the Ca2+ concentration from 2.5 to 7.5 mM (ICa recovered to 56% of the control). However, the latter effect took approximately 1 h to develop. Concentrations of La3+ that reduced ICa by 12-67%, 0.1-1.5 x 10(-6) M, had no measurable effect upon the voltage dependence of steady state ICa inactivation, which suggest that at these concentrations there are no significant surface-charge effects of La3+ on this gating mechanism. Three additional findings indicate that doses of La3+ that blocked ICa failed to produce nonspecific effects: (a) 10(-5) M La3+ had no measurable effect on the time-independent inwardly rectifying current, IK1; (b) the same concentration had no effect on the kinetics, amplitude, or voltage dependence of a time- and voltage-dependent K+ current, IK; and (c) 10(-4) M La3+ did not alter the size of the tetrodotoxin-sensitive inward Na+ current, INa, or the voltage dependence of its steady state inactivation. Higher concentrations (0.5-1.0 mM) reduced both IK1 and IK, and shifted the steady state activation curve for IK toward more positive potentials, presumably by reducing the external surface potential. Our results suggest that at a concentration of less than or equal to 10(-5) M, La3+ inhibits ICa selectively by direct blockade of Ca channels rather than by altering the external surface potential. At higher concentrations, La3+ exhibits nonspecific effects, including neutralization of negative external surface charge and inhibition of other time- and voltage-dependent ionic currents.  相似文献   

3.
Na channels inactivate quickly after opening, and the very highly positively charged cytoplasmic linking region between homologous domains III and IV of the channel molecule acts as the inactivation gate. To test the hypothesis that the charged residues in the domain III to domain IV linker have a role in channel function, we measured currents through wild-type and two mutant skeletal muscle Na channels expressed in Xenopus oocytes, each lacking two or three charged residues in the inactivation gate. Microscopic current measures showed that removing charges hastened activation and inactivation. Macroscopic current measures showed that removing charges altered the voltage dependence of inactivation, suggesting less coupling of the inactivation and activation processes. Reduced intracellular ionic strength shifted the midpoint of equilibrium activation gating to a greater extent, and shifted the midpoint of equilibrium inactivation gating to a lesser extent in the mutant channels. The results allow the possibility that an electrostatic mechanism contributes to the role of charged residues in Na channel inactivation gating.  相似文献   

4.
Human ether-à-go-go-related gene (HERG) encoded K+ channels were expressed in Chinese hamster ovary (CHO-K1) cells and studied by whole-cell voltage clamp in the presence of varied extracellular Ca2+ concentrations and physiological external K+. Elevation of external Ca2+ from 1.8 to 10 mM resulted in a reduction of whole-cell K+ current amplitude, slowed activation kinetics, and an increased rate of deactivation. The midpoint of the voltage dependence of activation was also shifted +22.3 +/- 2.5 mV to more depolarized potentials. In contrast, the kinetics and voltage dependence of channel inactivation were hardly affected by increased extracellular Ca2+. Neither Ca2+ screening of diffuse membrane surface charges nor open channel block could explain these changes. However, selective changes in the voltage-dependent activation, but not inactivation gating, account for the effects of Ca2+ on Human ether-à-go-go-related gene current amplitude and kinetics. The differential effects of extracellular Ca2+ on the activation and inactivation gating indicate that these processes have distinct voltage-sensing mechanisms. Thus, Ca2+ appears to directly interact with externally accessible channel residues to alter the membrane potential detected by the activation voltage sensor, yet Ca2+ binding to this site is ineffective in modifying the inactivation gating machinery.  相似文献   

5.
The effects of changes in intracellular and extracellular free ionized [Mg2+] on inactivation of ICa and IBa in isolated ventricular myocytes of the frog were investigated using the whole-cell configuration of the patch-clamp technique. Intracellular [Mg2+] was varied by internal perfusion with solutions having different calculated free [Mg2+]. Increasing [Mg2+]i from 0.3 mM to 3.0 mM caused a 16% reduction in peak ICa amplitude and a 36% reduction in peak IBa amplitude, shifted the current-voltage relationship and the inactivation curve approximately 10 mV to the left, decreased relief from inactivation, and caused a dramatic increase in the rate of inactivation of IBa. The shifts in the current-voltage and inactivation curves were attributed to screening of internal surface charge by Mg2+. The increased rate of inactivation of IBa was due to an increase in both the steady-state level of inactivation as well as an increase in the rate of inactivation, as measured by two-pulse inactivation protocols. Increasing external [Mg2+] decreased IBa amplitude and shifted the current-voltage and inactivation curves to the right, but, in contrast to the effect of internal Mg2+, had little effect on the inactivation kinetics or the steady-state inactivation of IBa at potentials positive to 0 mV. These observations suggest that the Ca channel can be blocked quite rapidly by external Mg2+, whereas the block by [Mg2+]i is time and voltage dependent. We propose that inactivation of Ca channels can occur by both calcium-dependent and purely voltage-dependent mechanisms, and that a component of voltage-dependent inactivation can be modulated by changes in cytoplasmic Mg2+.  相似文献   

6.
The effect of Bistramide A, a toxin isolated from Bistratum lissoclinum Sluiter (Urochordata), on the peak sodium current (INa) of frog skeletal muscle fibres was studied with the double sucrose gap voltage clamp technique. External or internal application of Bistramide A inhibited INa without alteration of the kinetic parameters of the current nor of the apparent reversal potential for Na. The steady-state activation curve of INa was unchanged while the steady-state inactivation curve of INa was shifted towards more negative membrane potentials. Dose-response curves indicated an apparent dissociation constant for Bistramide A of 3.3 microM and a Hill coefficient of 1.2 which suggested a one to one relation between the toxin and Na channel. The inhibition of INa occurred at rest, and was more important at more positive holding potentials. Bistramide A exhibited only a weak frequency-dependent effect. The toxin did not interact with the use-dependent effect of lidocaine. It mainly blocked Na channels at more depolarized holding potentials. The toxin blocked Na channels when it was internally applyed and when the inactivation gating system has been previously destroyed by internal diffusion of iodate. The data suggest that Bistramide A inhibited the Na channel both at rest and in the inactivated state and occupied a site which was not located on the inactivation gate.  相似文献   

7.
J R Clay 《Biophysical journal》1995,69(5):1773-1779
The effects of intracellular magnesium ions and extracellular calcium and magnesium ions on the delayed rectifier potassium ion channel, IK, were investigated from intracellularly perfused squid giant axons. Cao+2 and Mgo+2 both blocked IK in a voltage-independent manner with a KD of approximately 100 and 500 mM, respectively. This effect was obscured at potentials in the vicinity of the resting potential (approximately -60 mV) by a rightward shift of the steady-state IK inactivation curve along the voltage axis. The addition of either calcium or magnesium ions to the extracellular solution also produced the well known shift of the IK activation curve along the voltage axis. Cao+2 was approximately twice as effective in this regard as Mgo+2. The IK activation kinetics were slowed by Cao+2, but deactivation kinetics were not altered, as shown previously. Similar results were obtained with Mgo+2. The addition of magnesium ions to the intracellular perfusate shifted the activation curve along the voltage axis in the negative direction (without producing block) by approximately the same among as the Mgo+2 shift of this curve in the positive direction. Moreover, Mgi+2 substantially slowed the deactivation kinetics, whereas the effects of Mgi+2 on activation kinetics at strongly depolarized potentials were relatively minor. At modest depolarizations, Mgi+2 significantly reduced the delay before IK activation. These results are essentially the mirror image of the effects on gating of extracellular divalent cations.  相似文献   

8.
Raising the intracellular pH (pHi) above 7.7 in intracellularly perfused squid giant axons causes spontaneous firing of action potentials. The firing frequency ranged from 20 Hz at 0 degrees C to 200 Hz at 23 degrees C. Above 23 degrees C, the axons were quiescent. They were bistable for 13 相似文献   

9.
Contributions of the C-terminal domain of Kv4.3 to the voltage-dependent gating of A-type K+ current (IA) were examined by (i) making mutations in this region, (ii) heterologous expression in HEK293 cells, and (iii) detailed voltage clamp analyses. Progressive deletions of the C terminus of rat Kv4.3M (to amino acid 429 from the N terminus) did not markedly change the inactivation time course of IA but shifted the voltage dependence of steady state inactivation in the negative direction to a maximum of -17 mV. Further deletions (to amino acid 420) shifted this parameter in the positive direction, suggesting a critical role for the domain 429-420 in the voltage-dependent regulation of IA. There are four positively charged amino acids in this domain: Lys423, Lys424, Arg426, and Arg429. The replacement of the two arginines with alanines (R2A) resulted in -23 and -13 mV shifts of inactivation and activation, respectively. Additional replacement of the two lysines with alanines did not result in further shifts. Single replacements of R426A or R429A induced -15 and -10 mV shifts of inactivation, respectively. R2A did not significantly change the inactivation rate but did markedly change the voltage dependence of recovery from inactivation. These two arginines are conserved in Kv4 subfamily, and alanine replacement of Arg429 and Arg432 in Kv4.2 gave essentially the same results. These effects of R2A were not modulated by co-expression of the K+ channel beta subunit, KChIPs. In conclusion, the two arginines in the cytosolic C-terminal domain of alpha-subunits of Kv4 subfamily strongly regulate the voltage dependence of channel activation, inactivation, and recovery.  相似文献   

10.
超氧化物歧化酶(superoxide dismutase,SOD)是生物体内专一的过氧自由基(superoxide anions,O2.-)清除剂,而二乙基二硫代氨基甲酸钠(diethyldithiocarbamate,DDC)则是公认的Cu,Zn-SOD的抑制剂。采用全膜片钳技术研究了DDC对二氧化硫(sulfur dioxide,SO2)衍生物引起的大鼠心肌细胞钠电流增大效应的作用,以期更进一步揭示SO2的毒性机理。结果表明:SO2衍生物对SOD活性无显著影响,SO2衍生物存在时,DDC仍可以显著降低SOD的活性。DDC(10 ̄100 mmol/L)剂量依赖性地增大钠电流(INa),半数效应浓度为(19.85±0.95)mmol/L。将20 mmol/L的DDC与10μmol/L的SO2衍生物同时作用于心肌细胞,INa仍表现为电压依赖性的增大,并使INa的电压依赖性激活曲线显著地向负电压方向移动,稳态失活曲线向正电压方向移动,差异极其显著。这表明DDC增强了SO2衍生物对心肌细胞钠电流的增大效应,提示SO2衍生物引起的大鼠心肌细胞毒性主要是通过自由基,特别是O2.-氧化损伤实现的。  相似文献   

11.
HERG encodes an inwardly-rectifying potassium channel that plays an important role in repolarization of the cardiac action potential. Inward rectification of HERG channels results from rapid and voltage-dependent inactivation gating, combined with very slow activation gating. We asked whether the voltage sensor is implicated in the unusual properties of HERG gating: does the voltage sensor move slowly to account for slow activation and deactivation, or could the voltage sensor move rapidly to account for the rapid kinetics and intrinsic voltage dependence of inactivation? To probe voltage sensor movement, we used a fluorescence technique to examine conformational changes near the positively charged S4 region. Fluorescent probes attached to three different residues on the NH2-terminal end of the S4 region (E518C, E519C, and L520C) reported both fast and slow voltage-dependent changes in fluorescence. The slow changes in fluorescence correlated strongly with activation gating, suggesting that the slow activation gating of HERG results from slow voltage sensor movement. The fast changes in fluorescence showed voltage dependence and kinetics similar to inactivation gating, though these fluorescence signals were not affected by external tetraethylammonium blockade or mutations that alter inactivation. A working model with two types of voltage sensor movement is proposed as a framework for understanding HERG channel gating and the fluorescence signals.  相似文献   

12.
Twin-electrode voltage-clamp techniques were used to study the effect of calcium and calcium channel blockers on the transient outward current in isolated F76 and D1 neurones of Helix aspersa subesophageal ganglia in vitro (soma only preparation with no cell processes). On lowering extracellular Ca2+ concentration from 10 to 2 mm or removing extracellular calcium from the bathing medium, the threshold for this current shifted in a negative direction by 11.5 and 20 mV, respectively. On the other hand, increasing the extracellular Ca2+ concentration from 10 to 20 and to 40 mm shifted the steady-state inactivation curves in positive directions on the voltage axis by 7 and 15 mV, respectively. Upon application of calcium channel blockers, Co2+, La3+, Ni2+ and Cd2+, transient potassium current amplitude was reduced in a voltage-dependent manner, being more effective at voltages close to the threshold. The current was elicited even at a holding potential of −34 mV. The specific calcium channel blockers, amiloride and nifedipine did not shift the activation and steady-state inactivation curves and did not reduce the transient outward current amplitude. It was concluded that the transient outward current is not dependent on intracellular Ca2+ but that it is modulated by Ca2+ and di- and trivalent ions extracellularly. The effects of these ions are very unlikely to be due to a surface charge effect because the addition of La3+ (200 μm) completely reverses the shift in a hyperpolarizing direction when the extracellular Ca2+ concentration was reduced from 10 to 1 mm and additionally shifts the kinetics further still in a depolarizing direction. The responses seen here are consistent with a specific effect of di- and trivalent ions on the transient outward current channels leading to a modification of gating. Received: 30 March 1999/Revised: 5 October 1999  相似文献   

13.
M De Waard  M Seagar  A Feltz  F Couraud 《Neuron》1992,9(3):497-503
The effects of intracellularly applied inositol phosphates on voltage-dependent calcium channel currents were assessed in rat cerebellar neurons using the whole-cell recording configuration of the patch-clamp technique. Intraneuronal perfusion of 10 microM inositol 1,4,5-trisphosphate (IP3) increased the amplitude of currents elicited by depolarization from a holding potential of -40 mV. IP3 did not modify current activation, but shifted the steady-state inactivation curve toward more positive values. The dose-response curve indicated an EC50 of 0.5 microM for IP3. Inositol 1,3,4,5-tetrakisphosphate (IP4), but not inositol 4,5,-bisphosphate, mimicked the effect of IP3. The effect of IP3 persisted in the presence of 100 micrograms/ml heparin and did not depend on intracellular calcium mobilization, as similar responses were not produced by 10 mM caffeine or by intrapipette calcium buffering at pCa 6 instead of pCa 7.7. Preincubation with omega-conotoxin led to a 55% inhibition of barium current; however, inhibition was reversed by IP3, which reestablished the control current amplitude. These results imply that IP3 and IP4 can elicit calcium entry by modifying both the gating characteristics and the pharmacological properties of voltage-dependent calcium channels.  相似文献   

14.
Exposure of excitable tissues to hyperbaric environments has been shown to alter membrane ion conductances, but only little is known about the state of the membranes of intact cells in the post-decompression phase following a prolonged high-pressure treatment. Furthermore, almost nothing is known about high-pressure effects on skeletal muscle membranes. Therefore, we investigated changes to the input resistances, membrane potentials and voltage-gated membrane currents for sodium (INa), potassium (IK) and calcium (ICa) ions under voltage-clamp conditions in enzymatically isolated intact mammalian single fibers following a 3-hr high-pressure treatment up to 25 MPa at +4 degrees C. After a 3-hr 20 MPa treatment, the input resistance was increased but declined again for treatments with higher pressures. The resting membrane potentials were depolarized in the post-decompression phase following a 20-MPa high-pressure treatment; this could be explained by an increase in the Na+- over K+-permeability ratio and in intracellular [Na+]i. Following a 10-MPa high-pressure treatment, INa, IK and ICa amplitudes were similar compared to controls but were significantly reduced by 25 to 35% after a 3-hr 20-MPa high-pressure treatment. Interestingly, the voltage-dependent inactivation of INa and ICa seemed to be more stable at high pressures compared to the activation parameters, as no significant changes were found up to a 20-MPa treatment. For higher pressure applications (e.g., 25 MPa), there seemed to be a marked loss of membrane integrity and INa, IK and ICa almost disappeared.  相似文献   

15.
KV2.1 is the prominent somatodendritic sustained or delayed rectifier voltage-gated potassium (Kv) channel in mammalian central neurons, and is a target for activity-dependent modulation via calcineurin-dependent dephosphorylation. Using hanatoxin-mediated block of KV2.1 we show that, in cultured rat hippocampal neurons, glutamate stimulation leads to significant hyperpolarizing shifts in the voltage-dependent activation and inactivation gating properties of the KV2.1-component of delayed rectifier K+ (IK) currents. In computer models of hippocampal neurons, these glutamate-stimulated shifts in the gating of the KV2.1-component of IK lead to a dramatic suppression of action potential firing frequency. Current-clamp experiments in cultured rat hippocampal neurons showed glutamate-stimulation induced a similar suppression of neuronal firing frequency. Membrane depolarization also resulted in similar hyperpolarizing shifts in the voltage-dependent gating properties of neuronal IK currents, and suppression of neuronal firing. The glutamate-induced effects on neuronal firing were eliminated by hanatoxin, but not by dendrotoxin-K, a blocker of KV1.1-containing channels. These studies together demonstrate a specific contribution of modulation of KV2.1 channels in the activity-dependent regulation of intrinsic neuronal excitability.  相似文献   

16.
Voltage-gated sodium channels (VGSCs) in primary sensory neurons play a key role in transmitting pain signals to the central nervous system. BmK I, a site-3 sodium channel-specific toxin from scorpion Buthus martensi Karsch, induces pain behaviors in rats. However, the subtypes of VGSCs targeted by BmK I were not entirely clear. We therefore investigated the effects of BmK I on the current amplitude, gating and kinetic properties of Nav1.8, which is associated with neuronal hyperexcitability in DRG neurons. It was found that BmK I dose-dependently increased Nav1.8 current in smallsized (<25 μm) acutely dissociated DRG neurons, which correlated with its inhibition on both fast and slow inactivation. Moreover, voltage-dependent activation and steady-state inactivation curves of Nav1.8 were shifted in a hyperpolarized direction. Thus, BmK I reduced the threshold of neuronal excitability and increased action potential firing in DRG neurons. In conclusion, our data clearly demonstrated that BmK I modulated Nav1.8 remarkably, suggesting BmK I as a valuable probe for studying Nav1.8. And Nav1.8 is an important target related to BmK I-evoked pain.  相似文献   

17.
The voltage-dependent gating of single, batrachotoxin-activated Na channels from rat brain was studied in planar lipid bilayers composed of negatively charged or neutral phospholipids. The relationship between the probability of finding the Na channel in the open state and the membrane potential (Po vs. Vm) was determined in symmetrical NaCl, both in the absence of free Ca2+ and after the addition of Ca2+ to the extracellular side of the channel, the intracellular side, or both. In the absence of Ca2+, neither the midpoint (V0.5) of the Po vs. Vm relation, nor the steepness of the gating curve, was affected by the charge on the bilayer lipid. The addition of 7.5 mM Ca2+ to the external side caused a depolarizing shift in V0.5. This depolarizing shift was approximately 17 mV in neutral bilayers and approximately 25 mV in negatively charged bilayers. The addition of the same concentration of Ca2+ to only the intracellular side caused hyperpolarizing shifts in V0.5 of approximately 7 mV (neutral bilayers) and approximately 14 mV (negatively charged bilayers). The symmetrical addition of Ca2+ caused a small depolarizing shift in Po vs. Vm. We conclude that: (a) the Na channel protein possesses negatively charged groups on both its inner and outer surfaces. Charges on both surfaces affect channel gating but those on the outer surface exert a stronger influence. (b) Negative surface charges on the membrane phospholipid are close enough to the channel's gating machinery to substantially affect its operation. Charges on the inner and outer surfaces of the membrane lipid affect gating symmetrically. (c) Effects on steady-state Na channel activation are consistent with a simple superposition of contributions to the local electrostatic potential from charges on the channel protein and the membrane lipid.  相似文献   

18.
1. The effects of aluminum on voltage activated sodium currents (VASCs) were investigated by using the conventional two-electrode voltage clamp technique in Lymnaea stagnalis L. neurons. The peak amplitude, kinetics, and voltage-dependence of activation and inactivation of the sodium currents were studied in the presence of 5-500 microM AlCl3, at pH = 7.7. 2. There was a significant concentration-dependent increase in the peak amplitude of sodium currents after Al treatment, ED50 = 67 microM. The threshold concentration of the enhancement was 50 microM. The maximal peak increase of 143% was caused by a 500 microM aluminum. The action of aluminum on VASCs developed slowly, and it is not recovered by washing within 20 min. 3. There was little alteration of the voltage-dependence of the current. It was not a significant effect on the activation- and inactivation time constants of INa, but the steady-state inactivation curve shifted to negative direction on the voltage axis in the presence of Al. 4. The leak currents were not influenced by aluminum up to the highest concentration applied.  相似文献   

19.
The effect of ether and halothane on the kinetics of sodium and potassium currents were investigated in the crayfish giant axon. Both general anesthetics produced a reversible, dose-dependent speeding up of sodium current inactivation at all membrane potentials, with no change in the phase of the currents. Double-pulse inactivation experiments with ether also showed faster inactivation, but the rate of recovery from inactivation at negative potentials was not affected. Ether shifted the midpoint of the steady-state fast inactivation curve in the hyperpolarizing direction and made the curve steeper. The activation of potassium currents was faster with ether present, with no change in the voltage dependence of steady-state potassium currents. Ether and halothane are known to perturb the structure of lipid bilayer membranes; the alterations in sodium and potassium channel gating kinetics are consistent with the hypothesis that the rates of the gating processes of the channels can be affected by the state of the lipids surrounding the channels, but a direct effect of ether and halothane on the protein part of the channels cannot be ruled out. Ether did not affect the capacitance of the axon membrane.  相似文献   

20.
The putative hinge point revealed by the crystal structure of the MthK potassium channel is a glycine residue that is conserved in many ion channels. In high voltage-activated (HVA) Ca(V) channels, the mid-S6 glycine residue is only present in IS6 and IIS6, corresponding to G422 and G770 in Ca(V)1.2. Two additional glycine residues are found in the distal portion of IS6 (Gly(432) and Gly(436) in Ca(V)1.2) to form a triglycine motif unique to HVA Ca(V) channels. Lethal arrhythmias are associated with mutations of glycine residues in the human L-type Ca(2+) channel. Hence, we undertook a mutational analysis to investigate the role of S6 glycine residues in channel gating. In Ca(V)1.2, alpha-helix-breaking proline mutants (G422P and G432P) as well as the double G422A/G432A channel did not produce functional channels. The macroscopic inactivation kinetics were significantly decreased with Ca(V)1.2 wild type > G770A > G422A congruent with G436A > G432A (from the fastest to the slowest). Mutations at position Gly(432) produced mostly nonfunctional mutants. Macroscopic inactivation kinetics were markedly reduced by mutations of Gly(436) to Ala, Pro, Tyr, Glu, Arg, His, Lys, or Asp residues with stronger effects obtained with charged and polar residues. Mutations within the distal GX(3)G residues blunted Ca(2+)-dependent inactivation kinetics and prevented the increased voltage-dependent inactivation kinetics brought by positively charged residues in the I-II linker. In Ca(V)2.3, mutation of the distal glycine Gly(352) impacted significantly on the inactivation gating. Altogether, these data highlight the role of the GX(3)G motif in the voltage-dependent activation and inactivation gating of HVA Ca(V) channels with the distal glycine residue being mostly involved in the inactivation gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号