首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A starvation-based dissolved oxygen (DO) transient controller was developed to supply growth-limiting substrate to high cell density fed-batch cultures of recombinant Escherichia coli. The algorithm adjusted a preexisting feed rate in proportion to the culture's oxygen demand, which was estimated from transients in the DO concentration after short periods of feed interruption. In this manner, the addition of glucose feed was precisely controlled at a rate that did not exceed the acetate production threshold, thus preventing acetate accumulation. In comparison to exponential feed algorithms commonly used in industry, the implementation of the new feeding strategy increased the final cell density from 32 to 44 g (dry cell weight).L(-1), with less than 16 mM acetate accumulated, producing an ideal culture for subsequent induction. Despite a constant starvation level and relatively low levels of acetate, experimental cultivations still tended to produce acetate towards the end of the process. The use of a simple Monod model provided an explanation as to why this may occur in high cell density cultivations and suggests how it may be overcome.  相似文献   

2.
可溶性TRAIL蛋白的高密度培养及补料策略研究   总被引:3,自引:0,他引:3  
采用分批补料的方法高密度培养重组大肠杆菌C600/PbvTRAIL制备人可溶性TRAIL蛋白,优化发酵工艺,探索简单高效的分离纯化方法并测定蛋白生物活性。通过比较几种不同的补料策略:间歇流加、Dostat、pHstat,摸索了一种流加策略,即DOstatpHstat组合流加,有效的避免了发酵过程中,尤其是诱导表达阶段乙酸积累的增加,使TRAIL蛋白在高密度培养条件下,得到高效表达。菌体密度最终达到300g/L(WCW)以上,可溶性TRAIL蛋白占菌体总蛋白的4.2%,含量为1.1g/L。在整个发酵过程中,乙酸浓度接近于0,且未使用任何特殊手段,如纯氧、加压等,简化了发酵工艺,降低了发酵成本,为TRAIL的工业化生产创造了条件。  相似文献   

3.
甲醇营养型毕赤酵母表达外源蛋白是在醇氧化酶(alcohol oxidase,AOX)启动子(PAOXI)严格调控下进行的,然而这种启动子在转录水平受到葡萄糖的阻遏。本文研究了毕赤酵母在葡萄糖替代甘油为生长相碳源时表达重组植酸酶蛋白的发酵特征。结果表明:初始葡萄糖浓度为20dL的细胞得率高,为0.39g[DCW]/g。通过基于实时参数(溶氧和呼吸商)调控的葡萄糖补料策略,生长相40h后细胞密度达到100g[DCW]/L,甲醇诱导100h后植酸酶产量达到2200FTUphytase/mL,甲醇得率系数为0.25FTU phytase/gmethnol。因此,在毕赤酵母高表达重组蛋白培养中葡萄糖能够用作生长相基质,并能实现重组蛋白的高效表达。  相似文献   

4.
Simple cyclic fed-batch culture (cfbc), consisting of a constant medium feed with periodic withdrawals of culture, resulted in a product yield (13.4 mg protein per gram biomass) similar to that obtained using the complex multiphase industrial production strategy (13.7 mg protein per gram biomass). In cfbc, productivity was ultimately limited by the rate at which the cells could assimilate methanol. Glycerol was inhibitory to growth at high concentrations. However, product yield continued to increase as the glycerol concentration was increased. In chemostat culture, dissolved oxygen concentration influenced product yield independently of any detectable influence on cell growth.  相似文献   

5.
The purpose of the present study was to ascertain the optimal concentration of dissolved oxygen in order to maximize the intracellular glucose oxidase formation in Aspergillus niger. Cultivations performed in a 3.5 l laboratory reactor showed that a dissolved oxygen concentration at 3% of saturation at a total pressure of 1.2 bar was optimal for maximizing intracellular glucose oxidase activity. Cultivations performed at higher dissolved oxygen concentrations did not produce as much glucose oxidase as those performed at 3%, although the formation rate was high. Experiments revealed that maximal intracellular glucose oxidase formation for the A. niger strain used, is accomplished by limiting the gluconic acid production rate by means of maintaining a low dissolved oxygen concentration. Several attempts to achieve higher intracellular glucose oxidase activity were also made by manipulating the glucose concentration at a 3% dissolved oxygen concentration. However, no enhancement in glucose oxidase activity was observed.  相似文献   

6.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

7.
Summary Cytochrome P450 of Saccharomyces cerevisiae is an inducible enzyme system. Hitherto, its induction was related to semi-anaerobic culture conditions and high glucose concentrations in the growth medium respectively. Since glucose and oxygen are main regulatory effectors in this yeast, the relationship between the occurrence of cytochrome P450 and these two effectors was established in continuous culture. At glucose-derepressed conditions it was not possible to induce the formation of cytochrome P450 by oxygen limitation alone. The oxygen supply had to be decreased to a level where glucose repression also became active. At glucose-repressed conditions cytochrome P450 was obtained in good yield (3 to 5 pmol per mg dry cell weight) below a dissolved oxygen tension of appproximately 15%. There was a correlation between the content of mitochondrial cytochromes and that of cytochrome P450. The presence of mitochondrial cytochromes was reciprocal with cytochrome P450 when its content was increased by lowering the dissolved oxygen tension.  相似文献   

8.
Cell yield and toxicity of B. thuringiensis H-14 was improved markedly by adopting a simple fed-batch fermentation technique based on controlling glucose concentration. Maintenance of steady glucose concentration (0.3-0.5%) in the culture medium was achieved by the continuous addition of concentrated glucose solution. Addition of glucose at 3 g/hr/l of culture starting from 3rd hr till 16th hr of fermentation was found to yield cell densities of 80 g/l (wet weight) which represented a nearly 3-fold increase over the batch mode. A fivefold increase in toxicity was obtained by fed-batch fermentation. Cultivation of B. thuringiensis H-14 to high cell densities had no negative effect on sporulation and toxin synthesis. The rate of pH drop and dissolved oxygen level were within manageable limits.  相似文献   

9.
This article describes a novel bioreactor configuration for production optimization of recombinant proteins in Escherichia coli. Inducer addition and harvesting are controlled on-line based on indirect estimation of biomass concentration and specific growth rate from addition of NaOH to maintain constant pH. When either a predetermined biomass concentration is reached or the cultures have obtained, a constant specific growth rate inducer is introduced automatically. The induction period is ended by automatic harvesting of the cultures either at a predetermined biomass concentration or when substrate (in this study glucose) is depleted, detected as an increase of pH, or dissolved oxygen tension. During harvesting, metabolic activities are quenched within 3 min by cooling of the cell suspension. The system has been used to optimize expression of glutathione S-transferase (GST) fusion protein of the ligand binding domain of mouse peroxisome proliferator-activated receptor, GST-PPARalpha LBD. Total yield of GST-PPARalpha LBD was independent of the time of inducer addition as long as the length of induction period corresponded to at least 0.25 cell divisions while the yield of soluble GST-PPARalpha LBD, the only active form, increased with the length of induction period. Highest yields were obtained when the inducer was added at low cell concentration as soon as constant specific growth rate was detected, resulting in induction periods corresponding to 3.4 +/- 0.4 cell divisions. The specific growth rate remained almost constant for one cell division after inducer addition, whereafter it decreased. No decrease of specific growth rate was observed when inducer was added in the lag-phase, and no soluble protein was produced. These results suggest that solely soluble GST-PPARalpha LBD acts as a growth inhibitor and that GST-PPARalpha LBD is expressed predominantly as inclusion bodies immediately after inducer addition whereas the proportion expressed as soluble protein is increased after 1 h of induction. Compared to the procedures, which are generally used for protein expression in the laboratory, this system is less labor intensive, it automatically provides recording of biomass concentration and specific growth rate, and it allows direct comparisons between expression of different proteins and performance of different constructs since the induction period is linked to growth.  相似文献   

10.
Tryptone has multiple and complex effects on cell physiology and process performance in pulse fed-batch cultivation of recombinant Escherichia coli. By applying feedback control of dissolved oxygen signal responding to pulse in the feed rate, the production of acetate was avoided and the optimization of production of recombinant human epidermal growth factor (hEGF) was successfully achieved. With the addition of an optimum amount of tryptone along with glucose in the pulse fedbatch cultivation of E. coli, the ability of the cell to divide and the stability of the plasmid within the bacteria were improved. Consequently, segregation of the cells into a viable but non-culturable physiological state was alleviated. Addition of tryptone also enhanced cell respiration before and after hEGF expression and thus further benefited the production of recombinant hEGF. Excessive addition of tryptone resulted in low sensitivity of the oscillation of dissolved oxygen signal and poor operability of pulse fed-batch cultivation as this led to an accumulation of acetate, which weakened the dissolved oxygen signal responses. Consequently, the production of recombinant protein was considerably reduced. By combining the process performance and the positive effect of complex media pulse addition on bacterial metabolism, the optimal production conditions of hEGF were successfully determined. A high cell density of 91 g/L dry cell weight was obtained under these optimal production conditions. Furthermore, a high level of 0.24 g/L hEGF was attained leading to a 32.6% increase in product yield as compared to the controls.  相似文献   

11.
Summary Two kinds of fed batch fermentation processes were compared at a 10-liter scale to examine their effect on recombinant human insulin-like growth factor (IGF-1) gene expression inEscherichia coli. The difference between the two processes was the feed medium composition and whether the process used a single or dual feed during the course of the fermentation. In the dual feed system, organic nitrogen was delivered at a higher rate (50 g/h) than in the single feed system (5 g/h). The dual feed process resulted in a significant increase in IGF-1 yield. 30 mg IGF-1/g dry cell weight was synthesized in the dual feed system compared to 3 mg IGF-1/g dry cell weight obtained in the single feed system. The presence of high levels of organic nitrogen during the induction period may enhance IGF-1 synthesis by protecting the IGF-1 from proteolytic degradation. The IGF-1 yield decreased to 17 mg/g dry cell weight when the glucose supply was decreased from 17 g/h to 8 g/h during the induction period; however, an increase in glucose supply from 17 g/h to 50 g/h during the induction period did not enhance the IGF-1 synthesis. Thus, the enhancement of IGF-1 gene expression in the dual feed process was mainly dependent on a high level of organic nitrogen and an appropriate level of glucose in the medium during the induction period.  相似文献   

12.
Batch and fed-batch production of recombinant human epidermal growth factor (hEGF) was studied in an E. coli secretary expression system. By using MMBL medium containing 5 g/L glucose, controlling the temperature at 32 degrees C and maintaining the dissolved oxgen level over 20% saturation, a high yield of hEGF (32 mg/L) was obtained after an 18 hr batch cultivation with 0.2 mM IPTG induction at mid-log phase. Three different glucose feeding strategies were employed to further improve hEGF productivity in a bench top fermentor. Compared with the batch results, hEGF yield was improved up to 25.5% or 28.1%, respectively by intermittent or pH-stat glucose feeding, and up to 150% improvement of hEGF production was achieved by constant feeding of 200 g/L glucose solution at a rate of 0.11 mL/min. The effects of further combined feeding with other medium components and inducer on hEGF yield were also examined in the benchtop fermentor. This work is very helpful to further improve the productivity of extracellular hEGF in the recombinant E. coli system.  相似文献   

13.
Multiparameter flow cytometric techniques developed in our laboratories have been used for the "at-line" study of fed-batch bacterial fermentations. These fermentations were done at two scales, production (20 m(3)) and bench (5 x 10(-3) m(3)). In addition, at the bench scale, experiments were undertaken where the difficulty of achieving good mixing (broth homogeneity), similar to that found at the production scale, was simulated by using a two-compartment model. Flow cytometric analysis of cells in broth samples, based on a dual-staining protocol, has revealed, for the first time, that a progressive change in cell physiological state generally occurs throughout the course of such fermentations. The technique has demonstrated that a changing microenvironment with respect to substrate concentration (glucose and dissolved oxygen tension [DOT]) has a profound effect on cell physiology and hence on viable biomass yield. The relatively poorly mixed conditions in the large-scale fermentor were found to lead to a low biomass yield, but, surprisingly, were associated with a high cell viability (with respect to cytoplasmic membrane permeability) throughout the fermentation. The small-scale fermentation that most clearly mimicked the large-scale heterogeneity (i.e., a region of high glucose concentration and low DOT analogous to a feed zone) gave similar results. On the other hand, the small-scale well-mixed fermentation gave the highest biomass yield, but again, surprisingly, the lowest cell viability. The scaled-down simulations with high DOT throughout and locally low or high glucose gave biomass and viabilities between. Reasons for these results are examined in terms of environmental stress associated with an ever-increasing glucose limitation in the well-mixed case. On the other hand, at the large scale, and to differing degrees in scale-down simulations, cells periodically encounter regions of relatively higher glucose concentration.  相似文献   

14.
Acetone-butanol-ethanol (ABE) fermentation was performed continuously in an immobilized cell, trickle bed reactor for 54 days without, degeneration by maintaining the pH above 4.3. Column clogging was minimized by structured packing of immobilization matrix. The reactor contained two serial glass columns packed with Clostridium acetobutylicum adsorbed on 12- and 20-in.-long polyester sponge strips at total flow rates between 38 and 98.7 mL/h. Cells were initially grown at 20 g/L glucose resulting in low butanol (1.15 g/L) production encouraging cell growth. After the initial cell growth phase a higher glucose concentration (38.7 g/L) improved solvent yield from 13.2 to 24.1 wt%, and butanol production rate was the best. Further improvement in solvent yield and butanol production rate was not observed with 60 g/L of glucose. However, when the fresh nutrient supply was limited to only the first column, solvent yield increased to 27.3 wt% and butanol selectivity was improved to 0.592 as compared to 0.541 when fresh feed was fed to both columns. The highest butanol concentration of 5.2 g/L occurred at 55% conversion of the feed with 60 g/L glucose. Liquid product yield of immobilized cells approached the theoretical value reported in the literature. Glucose and product concentration profiles along the column showed that the columns can be divided into production and inhibition regions. The length of each zone was dependent upon the feed glucose concentration and feed pattern. Unlike batch fermentation, there was no clear distinction between acid and solvent production regions. The pH dropped, from 6.18-6.43 to 4.50-4.90 in the first inch of the reactor. The pH dropped further to 4.36-4.65 by the exit of the column. The results indicate that the strategy for long term stable operation with high solvent yield requires a structured packing of biologically stable porous matrix such as polyester sponge, a pH maintenance above 4.3, glucose concentrations up to 60 g/L and nutrient supply only to the inlet of the reactor.  相似文献   

15.
Semisteady state cultures are useful for studying cell physiology and facilitating media development. Two semisteady states with a viable cell density of 5.5 million cells/mL were obtained in CHO cell cultures and compared with a fed‐batch mode control. In the first semisteady state, the culture was maintained at 5 mM glucose and 0.5 mM glutamine. The second condition had threefold higher concentrations of both nutrients, which led to a 10% increase in lactate production, a 78% increase in ammonia production, and a 30% reduction in cell growth rate. The differences between the two semisteady states indicate that maintaining relatively low levels of glucose and glutamine can reduce the production of lactate and ammonia. Specific amino acid production and consumption indicated further metabolic differences between the two semisteady states and fed‐batch mode. The results from this experiment shed light in the feeding strategy for a fed‐batch process and feed medium enhancement. The fed‐batch process utilizes a feeding strategy whereby the feed added was based on glucose levels in the bioreactor. To evaluate if a fixed feed strategy would improve robustness and process consistency, two alternative feeding strategies were implemented. A constant volume feed of 30% or 40% of the initial culture volume fed over the course of cell culture was evaluated. The results indicate that a constant volumetric‐based feed can be more beneficial than a glucose‐based feeding strategy. This study demonstrated the applicability of analyzing CHO cultures in semisteady state for feed enhancement and continuous process improvement. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
The growth of Saccharomyces carlsbergensis in continuous culture has been studied when dissolved oxygen and glucose concentrations were held constant at a series of steady-state levels. Both oxygen and glucose controlled the degree of aerobic metabolism and of ethanolic fermentation. When the glucose uptake rate was low (between 1.2 and 2.8 mmoles per hour per gram of yeast) the relative distribution of glucose between ethanolic and aerobic fermentation was sensitive to oxygen: when dissolved oxygen was near to saturation, glucose metabolism was 0.98 aerobic; when dissolved oxygen was 0.01 saturated, 0.8 of intake glucose metabolism was by ethanolic fermentation. On the other hand when glucose intake was high (between 7.6 and 18.2 mmoles) metabolism was predominately by ethanolic fermentation even when dissolved oxygen concentration was at saturation. The extent, to which catabolism proceeded by an anaerobic or aerobic pathway, as judged by ethanol production, was controlled more by the uptake of glucose than of oxygen.  相似文献   

17.
In order to better understand the kinetics of cellulose degradation by Thermoactinomyces sp., continuous-culture experiments were performed utilizing the various intermediates of cellulose degradation as the feed substrates. Steady-state data from the glucose runs suggest that this organism has a growth yield of 0.42 g cell/g glucose, and a specific maintenance of 0.24 g glucose/g cell/hr. The Monod equation did not seen to model the growth well, since a plot of 1/D vs. 1/S gave a maximum specific growth rate that was even lower than one of the steady-state dilution rates. A dynamic washout experiment suggested a maximum specific specific growth rate of 0.36 hr?1 and indicated that glucose is only slightly growth inhibitory as the inhibition constant, Ki, is 19 g glucose/liter. An equation for substrate concentration for washout conditions was derived. This equation predicted the transient glucose concentration relatively well. A fill-and-draw technique was investigated for determination of the growth parameters. It was not successful because of difficulties in contamination and accurately monitoring the dissolved oxygen in the small highly agitated vessel. However, the technique could be useful in studying the growth characteristics of sludge in a waste treatment system where contamination is not a worry. One could cover the medium surface and use a nonsterilizable dissolved oxygen probe of high sensitivity membrane to overcome these difficulties.  相似文献   

18.
Summary As Phaffia rhodozyma is a Crabtree positive yeast, its cell yield and pigment production are reduced at high sugar concentrations. A method for maintaining low growth medium sugar concentrations is fed-batch culture. Using a mass balance approach and Monod growth kinetics a model is presented which describes the fed-batch culture of Phaffia rhodozyma and enables the calculation of a feed regime to obtain the maximum yield of cells and pigment. Although developed on a glucose medium, the model was also applied successfully to a molasses-based medium.  相似文献   

19.
Use of the glucose oxidase system to measure oxygen transfer rates   总被引:1,自引:0,他引:1  
This investigation used the glucose oxidase system to simulate oxygen transfer rate in fermentation broths. It was demonstrated that the fungal preparation contained sufficient lactonase activity so that D -glucono-δ-lactone did not accumulate and that the rate of production of gluconic acid was proportional to the oxygen uptake rate. Enzyme concentrations of 1.5–2 g/1 were found adequate to determine oxygen absorption rates in shake flasks while maintaining the dissolved oxygen concentration of low levels. The apparent Michaelis constant for oxygen, Km(O2), was found to be 27% saturation with air; this value along with experimentally determined uptake rates could be used to calculate dissolved oxygen concentration in lieu of using a dissolved oxygen probe. Enzyme concentrations of 5 g/l were sufficient to give linear acid production and low dissolved oxygen concentrations in a bench-scale fermenter with no foaming or enzyme deactivation. The method is considered more valid and easier to employ than previously utilized techniques such as sulfite oxidation. Extension of the system to evaluating aeration effectiveness and scaleup of fermentation equipment is discussed.  相似文献   

20.
Summary An open-loop, on-off control system using the dissolved oxygen level to control a glucose feed was used in a study of growth and production of protease by Bacillus subtilis CNIB 8054. With this system, both glucose and oxygen were controlled at low concentrations. In batch fermentations, protease activity in the fermentation broth was maximum when growth had stopped. During oxygen-controlled, glucose fed-batch fermentations, growth and the production of protease activity continued during glucose feeding. Oxygen-controlled, glucose fed-batch fermentations produced more protease activity than batch fermentations, depending upon the set point for dissolved oxygen. These results indicate that control of glucose and oxygen concentrations can result in improvements in protease production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号