首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary New 2D and 3D 1H-13C-15N triple resonance experiments are presented which allow unambiguous assignments of intranucleotide H1'-H8(H6) connectivities in 13C-and 15N-labeled RNA oligonucleotides. Two slightly different experiments employing double INEPT forward and back coherence transfers are optimized to obtain the H1'-C1'-N9/N1 and H8/H6-C8/C6-N9/N1 connectivities, respectively. The correlation of H1' protons to glycosidic nitrogens N9/N1 is obtained in a nonselective fashion. To correlate H8/H6 with their respective glycosidic nitrogens, selective 13C-refocusing and 15N-inversion pulses are applied to optimize the magnetization transfers along the desired pathway. The approach employs the heteronuclear one-bond spin-spin interactions and allows the 2D 1H-15N and 3D1H-13C-15N chemical shift correlation of nuclei along and adjacent to the glycosidic bond. Since the intranucleotide correlations obtained are based exclusively on through-bond scalar interactions, these experiments resolve the ambiguity of intra-and internucleotide H1'-H8(H6) assignments obtained from the 2D NOESY spectra. These experiments are applied to a 30-base RNA oligonucleotide which contains the binding site for Rev protein from HIV.  相似文献   

2.
The feasibility of using two-bond 15N-1H couplings to resolve the 1H-1H nuclear Overhauser effect spectrum of RNA into a third dimension was investigated, using the 36-nucleotide gene 32 messenger RNA pseudoknot of bacteriophage T2 as an example. The two-bond 15N-1H couplings present in adenosine and guanosine were found to be suitable for generating a three-dimensional 1H-1H-15N NOESY-HSQC spectrum with reasonably good sensitivity, as well as favorable chemical shift dispersion in the nitrogen dimension. The described NMR experiment provides a tool that can be used to complement other heteronuclear methods in the analysis of RNA structure.  相似文献   

3.
We report the determination of two- and three-bond 1H-15N spin–spin couplings in the nmr spectra of a polypeptide. The 1H- and 15N-nmr spectra of 99.2% 15N-enriched alumichrome have been studied at 360 MHz and 10.1 MHz, repectively. While some 2J and 3J coupling are of the order of 5 Hz, most splitting resulting from the heteronuclear interaction are ?2 Hz, which introduces strigent requirements of spectral resolution. In the 1H spectra these requirements were met by digital deconvolution with a sine bell routine combined with positive exponential filtering. Although the 15N spectra clearly exhibit features of fine structure, mainly because of the intrinsic higher nmir sensitivity of protons, observation of 1H-15N spin–spin couplings was found to be more practical in the 1H than in the 15N spectra. We find that the alumichrome data do not satisfy a simple cyclic relationship linking the heteronuclear couplings to the crystallographic ψ dihedral angles. It is suggested that a formal treatment of the ψ-related interresidue 1H-15N coupling might have to take into account a more complex dependence of the intervening 3J on the overall local electronic structure, which is dependent on ?,ψ, and ω simultaneoulsy. In contrast, our analysis indicates that χ1 can be readily determined from the measurement of the corresponding heteronuclear 3J coupling in the 1Hβ or in the amide 15N resonances. Karplus relationships are proposed that relate this heteronuclear 3J to the corresponding dihedral angle θ and which, on average, yield   相似文献   

4.
Summary New pulse sequences are introduced and discussed that allow for simultaneous acquisition of 15N,1H-and 13C,1H-HSQC correlations for fully 13C,15N-labeled biomacromolecules in combination with hetero-nuclear gradient echoes and sensitivity enhancement. The pulse sequence experimentally found to be optimal can be used as a building block, especially in time-consuming multidimensional NMR experiments. Due to the excellent solvent suppression obtained by employing heteronuclear gradient echoes, which allows detection of resonances under the water resonance, it would be possible to record two sensitivity-enhanced 4D experiments simultaneously on one sample dissolved in H2O, e.g. a 4D 13C,1H-HSQC-NOESY-15N, 1H/13C,1H-HSQC.  相似文献   

5.
Recent studies have shown that lysine side-chain NH3 + groups are excellent probes for NMR investigations of dynamics involving hydrogen bonds and ion pairs relevant to protein function. However, due to rapid hydrogen exchange, observation of 1H-15N NMR cross peaks from lysine NH3 + groups often requires use of a relatively low temperature, which renders difficulty in resonance assignment. Here we present an effective strategy to assign 1H and 15N resonances of NH3 + groups at low temperatures. This strategy involves two new 1H/13C/15N triple-resonance experiments for lysine side chains. Application to a protein-DNA complex is demonstrated.  相似文献   

6.
Recent studies have indicated that the relaxation rate of the 1H-13C multiple-quantum coherence is much slower than that of the 1H-13C single-quantum coherence for non-aromatic methine sites in 13 C labeled proteins and in nucleic acids at the slow tumbling limit. Several heteronuclear experiments have been designed to use a multiple-quantum coherence transfer scheme instead of the single-quantum transfer method, thereby increasing the sensitivity and resolution of the spectra. Here, we report a constant time, gradient and sensitivity enhanced HMQC experiment (CT-g/s-HMQC) and demonstrate that it has a significant sensitivity enhancement over constant time HMQC and constant time gradient and sensitivity enhanced HSQC experiments (CT-g/s-HSQC) when applied to a 13C and 15 N labeled calmodulin sample in D2O. We also apply this approach to 3D NOESY-HMQC and doubly sensitivity enhanced TOCSY-HMQC experiments, and demonstrate that they are more sensitive than their HSQC counterparts.  相似文献   

7.
Resonance assignment is necessary for the comprehensive structure determination of insoluble proteins by solid-state NMR spectroscopy. While various 2D and 3D correlation techniques involving 13C and 15N spins have been developed for this purpose, 1H chemical shift has not been exploited sufficiently. We demonstrate the combination of the regular 1H-13C heteronuclear correlation (HETCOR) experiment and a dipolar filtered HETCOR technique to obtain better resolved 1H chemical shift spectra. The dipolar filtered experiment, MELODI-HETCOR, simplifies the 1H spectra by suppressing the directly bonded C-H correlation peaks and retaining only the medium- and long-range cross peaks. We apply this MELODI-HETCOR technique to several amino acids and proteins with various isotopic labeling patterns. The enhanced 1H chemical shift resolution allows the assignment of overlapping H and H resonances in Ser, identifies the 1H chemical shift differences between neutral and cationic imidazole rings of His, and permits the assignment of residues with side chain nitrogen atoms in ubiquitin. The potential utility of this dipolar filtered HETCOR technique to resonance assignment of extensively labeled proteins is discussed.  相似文献   

8.
Summary The advent of methods for preparing 15N- and 13C-labeled RNA oligonucleotides holds promise for extending the size of RNA molecules that can be studies by NMR spectroscopy. A practical limitation is the expense of the 13C label. It may therefore sometimes be desirable to prepare a relatively inexpensive 15N-labeled sample only. Here we show that the two-bond 1H-15N HSQC experiment can be used on 15N-labeled RNA to correlate the intranucleotide H1 and H8,H6,H5 resonances indirectly through the shared glycosidic nitrogen. The nonrefocused version of a standard HSQC experiment for 2D proton-detected 1H-15N chemical-shift correlation is applied in order to minimize the sensitivity loss due to the relatively fast spin-spin relaxation of RNA oligonucleotides. The experiment is applied to the 30-nucleotide RNA RBE3 which contains the high-affinity binding site of the RRE (rev response element) for the Rev protein of HIV. The results indicate that this simple experiment allows a straightforward identification of the base proton resonances CH5, CH6, UH5, UH6, purine H8, and AH2 as well as the intranucleotide H1 and H8,H6,H5 connectivities. When combined with a NOESY experiment, complete sequential assignments can be obtained.  相似文献   

9.
Four novel amino acid type-selective triple resonance experiments to identify the backbone amino proton and nitrogen resonances of Arg and Lys and of their sequential neighbors in (13C,15N)-labeled proteins are presented: the R(i+1)-HSQC and R(i,i+1)-HSQC select signals originating from Arg side chains, the K(i+1)-HSQC and K(i,i+1)-HSQC select signals originating from Lys side chains. The selection is based on exploiting the characteristic chemical shifts of a pair of carbon atoms in Arg and Lys side chains using selective 90° pulses. The new experiments are recorded as two-dimensional 1H-15N-correlations and their performance is demonstrated with the application to a protein domain of 83 amino acids.  相似文献   

10.

Background

Identification of individual components in complex mixtures is an important and sometimes daunting task in several research areas like metabolomics and natural product studies. NMR spectroscopy is an excellent technique for analysis of mixtures of organic compounds and gives a detailed chemical fingerprint of most individual components above the detection limit. For the identification of individual metabolites in metabolomics, correlation or covariance between peaks in 1H NMR spectra has previously been successfully employed. Similar correlation of 2D 1H-13C Heteronuclear Single Quantum Correlation spectra was recently applied to investigate the structure of heparine. In this paper, we demonstrate how a similar approach can be used to identify metabolites in human biofluids (post-prostatic palpation urine).

Results

From 50 1H-13C Heteronuclear Single Quantum Correlation spectra, 23 correlation plots resembling pure metabolites were constructed. The identities of these metabolites were confirmed by comparing the correlation plots with reported NMR data, mostly from the Human Metabolome Database.

Conclusions

Correlation plots prepared by statistically correlating 1H-13C Heteronuclear Single Quantum Correlation spectra from human biofluids provide unambiguous identification of metabolites. The correlation plots highlight cross-peaks belonging to each individual compound, not limited by long-range magnetization transfer as conventional NMR experiments.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0413-z) contains supplementary material, which is available to authorized users.  相似文献   

11.
The biodegradation of benzothiazole and 2-hydroxybenzothiazole by two strains of Rhodococcus was monitored by reversed phase high-pressure liquid chromatography and by 1H nuclear magnetic resonance (NMR). Both xenobiotics were biotransformed into a hydroxylated derivative of 2-hydroxybenzothiazole by these two strains. The chemical structure of this metabolite was determined by a new NMR methodology: long-range 1H-15N heteronuclear shift correlation without any previous 15N enrichment of the compound. This powerful NMR tool allowed us to assign the metabolite structure to 2,6-dihydroxybenzothiazole.  相似文献   

12.
We have performed three-dimensional NMR studies on a central component of the phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli, denoted as HPr. The protein was uniformly enriched with 15N and 13C to overcome spectral overlap. Complete assignments were obtained for the backbone 1H, 15N and 13C resonances, using three-dimensional heteronuclear 1H NOE 1H-15N multiple-quantum coherence spectroscopy (3D-NOESY-HMQC) and three-dimensional heteronuclear total correlation 1H-15N multiple-quantum coherence spectroscopy (3D-TOCSY-HMQC) experiments on 15N-enriched HPr and an additional three-dimensional triple-resonance 1HN-15N-13C alpha correlation spectroscopy (HNCA) experiment on 13C, 15N-enriched HPr. Many of the sequential backbone 1H assignments, as derived from two-dimensional NMR studies [Klevit, R.E., Drobny, G.P. & Waygood, E.B. (1986) Biochemistry 25, 7760-7769], were corrected. Almost all discrepancies are in the helical regions, leaving the published antiparallel beta-sheet topology almost completely intact.  相似文献   

13.
Based on sequence homology, desulfothioredoxin (DTrx) from Desulfovibrio vulgaris Hildenborough has been identified as a new member of the thioredoxin superfamily. Desulfothioredoxin (104 amino acids) contains a particular active site consensus sequence, CPHC probably correlated to the anaerobic metabolism of these bacteria. We report the full 1H, 13C and 15N resonance assignments of the reduced and the oxidized form of desulfothioredoxin (DTrx). 2D and 3D heteronuclear NMR experiments were performed using uniformly 15N-, 13C-labelled DTrx. More than 98% backbone and 96% side-chain 1H, 13C and 15N resonance assignments were obtained. (BMRB deposits with accession number 16712 and 16713).  相似文献   

14.
In this paper, we present a strategy for the 1HN resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the -spectrin SH3 domain as an example. A novel 3D triple resonance experiment is presented that yields intraresidue HN-N-C correlations, which was essential for the proton assignment. For the observable residues, 52 out of the 54 amide proton resonances were assigned from 2D (1H-15N) and 3D (1H-15N-13C) heteronuclear correlation spectra. It is demonstrated that proton-driven spin diffusion (PDSD) experiments recorded with long mixing times (4 s) are helpful for confirming the assignment of the protein backbone 15N resonances and as an aid in the amide proton assignment.  相似文献   

15.
A modified version of the JHH-TOCSY experiment, `signed COSY', is presented that allows the determination of the sign of residual dipolar 1H-1H coupling constants with respect to the sign of one-bond 1H-X coupling constants in linear three-spin systems X-1H-1H, where X = 13C or 15N. In contrast to the original JHH-TOCSY experiments, the signs of J HH couplings may be determined for CH2-CH2 moieties and for uniformly 13C/15N-labelled samples. In addition, sensitivity is enhanced, diagonal peaks are suppressed and cross peaks are observed only between directly coupled protons, as in a COSY spectrum.  相似文献   

16.
A phosphoramidite linker unit, based on glycerol backbone and containing a biotin residue attached through a tetraethylene glycol spacer arm, was synthesized. DMTr-Glycidol and tetraethylene glycol were used as starting materials. After conversion of one of hydroxy groups in tetraethylene glycol into an amino group, the epoxy cycle in DMTr-glycidol was opened by this amino alcohol, resulting in the corresponding ether and some quantity of secondary amine. After attaching of biotin residue to the ether followed by phosphitylation, the desirable linker was obtained. The structure of the linker was confirmed by 1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC, 1H-15N HSQC, and 1H-15N HMBC spectra. The resulted phosphoramidite linker unit is suitable for use in common DNA synthesizers. This approach can be used for preparation of various modifiers containing reporter groups attached to the primary amino function using conventional procedures.  相似文献   

17.
Resonance assignment is the first step in NMR structure determination. For magic angle spinning NMR, this is typically achieved with a set of heteronuclear correlation experiments (NCaCX, NCOCX, CONCa) that utilize SPECIFIC-CP 15N–13C transfers. However, the SPECIFIC-CP transfer efficiency is often compromised by molecular dynamics and probe performance. Here we show that one-bond ZF-TEDOR 15N–13C transfers provide simultaneous NCO and NCa correlations with at least as much sensitivity as SPECIFIC-CP for some non-crystalline samples. Furthermore, a 3D ZF-TEDOR-CC experiment provides heteronuclear sidechain correlations and robustness with respect to proton decoupling and radiofrequency power instabilities. We demonstrate transfer efficiencies and connectivities by application of 3D ZF-TEDOR-DARR to a model microcrystalline protein, GB1, and a less ideal system, GvpA in intact gas vesicles.  相似文献   

18.
Hydroxyl protons on serine and threonine residues are not well characterized in protein structures determined by both NMR spectroscopy and X-ray crystallography. In the case of NMR spectroscopy, this is in large part because hydroxyl proton signals are usually hidden under crowded regions of 1H-NMR spectra and remain undetected by conventional heteronuclear correlation approaches that rely on strong one-bond 1H–15N or 1H–13C couplings. However, by filtering against protons directly bonded to 13C or 15N nuclei, signals from slowly-exchanging hydroxyls can be observed in the 1H-NMR spectrum of a uniformly 13C/15N-labeled protein. Here we demonstrate the use of a simple selective labeling scheme in combination with long-range heteronuclear scalar correlation experiments as an easy and relatively inexpensive way to detect and assign these hydroxyl proton signals. Using auxtrophic Escherichia coli strains, we produced Bacillus circulans xylanase (BcX) labeled with 13C/15N-serine or 13C/15N-threonine. Signals from two serine and three threonine hydroxyls in these protein samples were readily observed via 3JC–OH couplings in long-range 13C-HSQC spectra. These scalar couplings (~5–7 Hz) were measured in a sample of uniformly 13C/15N-labeled BcX using a quantitative 13C/15N-filtered spin-echo difference experiment. In a similar approach, the threonine and serine hydroxyl hydrogen exchange kinetics were measured using a 13C/15N-filtered CLEANEX-PM pulse sequence. Collectively, these experiments provide insights into the structural and dynamic properties of several serine and threonine hydroxyls within this model protein.  相似文献   

19.
Abstract

1-[(2-Acetoxyethoxy)methyl]-5-chloro-6-azauracil has been prepared and its unambiguous assignment of 1H and 13C peaks through the 1H-13C heteronuclear correlation (HETCOR) NMR experiments is described. The isosteric 1-[(2-acetoxyethoxy)methyl]-5-bromo-6-azaisocytosine has also been synthesized. The X-Ray crystallographic analysis reveals unambiguously the site of glycosylation at N1. Deacetylation of both acyclonucleosides provided 5-chloro-1-[(2-hydroxyethoxy)methyl]-6-azauracil and 5-bromo-1-[(2-hydroxyethoxy)methyl]-6-azaisocytosine respectively. Their structures have been well established by the NMR spectra and the elemental analyses.  相似文献   

20.
Residual heteronuclear dipolar couplings obtained from partially oriented protein samples can provide unique NMR constraints for protein structure determination. However, partial orientation of protein samples also causes severe 1 H line broadening resulting from residual 1 H-1H dipolar couplings. In this communication we show that band-selective 1H homonuclear decoupling during data acquisition is an efficient way to suppress residual 1H-1H dipolar couplings, resulting in spectra that are still amenable to solution NMR analysis, even with high degrees of alignment. As an example, we present a novel experiment with improved sensitivity for the measurement of one-bond 1 HN-15N residual dipolar couplings in a protein sample dissolved in magnetically aligned liquid crystalline bicelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号