首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.  相似文献   

2.
It has been reported (Ruzicka, F.J., and Beinert, H. (1978) J. Biol. Chem. 253, 2514-2517) that aconitase in the oxidized state, as isolated, shows an electron paramagnetic resonance signal centered at g = 2.01, typical of high potential iron-sulfur proteins. Since the magnetic state corresponding to this signal has thus far only been found in tetranuclear iron-sulfur clusters in model compounds and proteins, it could be expected that aconitase also contains a [4Fe-4S] cluster. We show here that core extrusion, in the presence of hexamethylphosphoramide and o-xylyl-alpha,alpha'-dithiol and subsequent ligand exchange with p-trifluoromethylbenzenethiol yield absorption spectra typical of binuclear iron-sulfur clusters. According to the absorbance measured, the concentration of the extruded [2Fe-2S] cluster quantitatively accounts for the iron-sulfur content of the preparations examined. Preliminary studies of the 19F nuclear magnetic resonance spectrum obtained on extrusion with p-trifluoromethylbenzenethiol confirm the presence of a binuclear cluster in aconitase.  相似文献   

3.
Chandramouli K  Johnson MK 《Biochemistry》2006,45(37):11087-11095
The role of the Azotobacter vinelandii HscA/HscB cochaperone system in ISC-mediated iron-sulfur cluster biogenesis has been investigated in vitro by using CD and EPR spectrometry to monitor the effect of HscA, HscB, MgATP, and MgADP on the time course of cluster transfer from [2Fe-2S]IscU to apo-Isc ferredoxin. CD spectra indicate that both HscB and HscA interact with [2Fe-2S]IscU and the rate of cluster transfer was stimulated more than 20-fold in the presence stoichiometric HscA and HscB and excess MgATP. No stimulation was observed in the absence of either HscB or MgATP, and cluster transfer was found to be an ATP-dependent reaction based on concomitant phosphate production and the enhanced rates of cluster transfer in the presence of KCl which is known to stimulate HscA ATPase activity. The results demonstrate a role of the ISC HscA/HscB cochaperone system in facilitating efficient [2Fe-2S] cluster transfer from the IscU scaffold protein to acceptor proteins and that [2Fe-2S] cluster transfer from IscU is an ATP-dependent process. The data are consistent with the proposed regulation of the HscA ATPase cycle by HscB and IscU [Silberg, J. J., Tapley, T. L., Hoff, K. G., and Vickery, L. E. (2004) J. Biol. Chem. 279, 53924-53931], and mechanistic proposals for coupling of the HscA ATPase cycle with cluster transfer from [2Fe-2S]IscU to apo-IscFdx are discussed.  相似文献   

4.
IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·1020 M?1. The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters.  相似文献   

5.
Photolyases and cryptochromes are evolutionarily related flavoproteins with distinct functions. While photolyases can repair UV-induced DNA lesions in a light-dependent manner, cryptochromes regulate growth, development and the circadian clock in plants and animals. Here we report about two photolyase-related proteins, named PhrA and PhrB, found in the phytopathogen Agrobacterium tumefaciens. PhrA belongs to the class III cyclobutane pyrimidine dimer (CPD) photolyases, the sister class of plant cryptochromes, while PhrB belongs to a new class represented in at least 350 bacterial organisms. Both proteins contain flavin adenine dinucleotide (FAD) as a primary catalytic cofactor, which is photoreduceable by blue light. Spectral analysis of PhrA confirmed the presence of 5,10-methenyltetrahydrofolate (MTHF) as antenna cofactor. PhrB comprises also an additional chromophore, absorbing in the short wavelength region but its spectrum is distinct from known antenna cofactors in other photolyases. Homology modeling suggests that PhrB contains an Fe-S cluster as cofactor which was confirmed by elemental analysis and EPR spectroscopy. According to protein sequence alignments the classical tryptophan photoreduction pathway is present in PhrA but absent in PhrB. Although PhrB is clearly distinguished from other photolyases including PhrA it is, like PhrA, required for in vivo photoreactivation. Moreover, PhrA can repair UV-induced DNA lesions in vitro. Thus, A. tumefaciens contains two photolyase homologs of which PhrB represents the first member of the cryptochrome/photolyase family (CPF) that contains an iron-sulfur cluster.  相似文献   

6.
Iron-sulfur (Fe-S) clusters are important prosthetic groups in all organisms. The biosynthesis of Fe-S clusters has been studied extensively in bacteria and yeast. By contrast, much remains to be discovered about Fe-S cluster biogenesis in higher plants. Plant plastids are known to make their own Fe-S clusters. Plastid Fe-S proteins are involved in essential metabolic pathways, such as photosynthesis, nitrogen and sulfur assimilation, protein import, and chlorophyll transformation. This review aims to summarize the roles of Fe-S proteins in essential metabolic pathways and to give an overview of the latest findings on plastidic Fe-S assembly. The plastidic Fe-S biosynthetic machinery contains many homologues of bacterial mobilization of sulfur (SUF) proteins, but there are additional components and properties that may be plant-specific. These additional features could make the plastidic machinery more suitable for assembling Fe-S clusters in the presence of oxygen, and may enable it to be regulated in response to oxidative stress, iron status and light.  相似文献   

7.
Holo glutaredoxin (Grx) is a homo-dimer that bridges a [2Fe-2S] cluster with two glutathione (GSH) ligands. In this study, both monothiol and dithiol holo Grxs are found capable of transferring their iron-sulfur (FeS) cluster to an apo ferredoxin (Fdx) through direct interaction, regardless of FeS cluster stability in holo Grxs. The ligand GSH molecules in holo Grxs are unstable and can be exchanged with free GSH, which inhibits the FeS cluster transfer from holo Grxs to apo Fdx. This phenomenon suggests a novel role of GSH in FeS cluster trafficking.  相似文献   

8.
Iron-sulfur cluster biosynthesis depends on protein machineries, such as the ISC and SUF systems. The reaction is proposed to imply binding of sulfur and iron atoms and assembly of the cluster within a scaffold protein followed by transfer of the cluster to recipient apoproteins. The SufA protein from Escherichia coli, used here as a model scaffold protein is competent for binding sulfur atoms provided by the SufS-SufE cysteine desulfurase system covalently as shown by mass spectrometry. Investigation of site-directed mutants and peptide mapping experiments performed on digested sulfurated SufA demonstrate that binding exclusively occurs at the three conserved cysteines (cys50, cys114, cys116). In contrast, it binds iron only weakly (K(a)=5 x 10(5)M(-1)) and not specifically to the conserved cysteines as shown by M?ssbauer spectroscopy. [Fe-S] clusters, characterized by M?ssbauer spectroscopy, can be assembled during reaction of sulfurated SufA with ferrous iron in the presence of a source of electrons.  相似文献   

9.
Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S](2+) clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dithionite results in conversion to enzyme containing [4Fe-4S](2+) and/or [4Fe-4S](+) clusters. To establish the predominant cluster forms present in biotin synthase in anaerobic assays, and by inference in Escherichia coli, we have accurately determined the extinction coefficient and cluster content of the enzyme under oxidized and reduced conditions and have examined the equilibrium reduction potentials at which cluster reductions and conversions occur as monitored by UV/visible and EPR spectroscopy. In contrast to previous reports, we find that aerobically purified BioB contains ca. 1.2-1.5 [2Fe-2S](2+) clusters per monomer with epsilon(452) = 8400 M(-)(1) cm(-)(1) per monomer. Upon reduction, the [2Fe-2S](2+) clusters are converted to [4Fe-4S] clusters with two widely separate reduction potentials of -140 and -430 mV. BioB reconstituted with excess iron and sulfide in 60% ethylene glycol was found to contain two [4Fe-4S](2+) clusters per monomer with epsilon(400) = 30 000 M(-)(1) cm(-)(1) per monomer and is reduced with lower midpoint potentials of -440 and -505 mV, respectively. Finally, as predicted by the measured redox potentials, enzyme incubated under typical anaerobic assay conditions is repurified containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. These results indicate that the dominant stable cluster state for biotin synthase is a dimer containing two [2Fe-2S](2+) and two [4Fe-4S](2+) clusters.  相似文献   

10.
Here, we compare two approaches of protein design. A computational approach was used in the design of the coiled-coil iron-sulfur protein, CCIS, as a four helix bundle binding an iron-sulfur cluster within its hydrophobic core. An empirical approach was used for designing the redox-chain maquette, RCM as a four-helix bundle assembling iron-sulfur clusters within loops and one heme in the middle of its hydrophobic core. We demonstrate that both ways of design yielded the desired proteins in terms of secondary structure and cofactors assembly. Both approaches, however, still have much to improve in predicting conformational changes in the presence of bound cofactors, controlling oligomerization tendency and stabilizing the bound iron-sulfur clusters in the reduced state. Lessons from both ways of design and future directions of development are discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

11.
IscA, an 11 kDa member of the hesB family of proteins, binds iron and [2Fe-2S] clusters, and participates in the biosynthesis of iron-sulfur proteins. We report the crystal structure of the apo-protein form of IscA from Escherichia coli to a resolution of 2.3A. The crystals belong to the space group P3(2)21 and have unit cell dimensions a=b=66.104 A, c=150.167 A (alpha=beta=90 degrees, gamma=120 degrees ). The structure was solved using single-wavelength anomalous dispersion (SAD) phasing of a selenomethionyl derivative, and the IscA model was refined to R=21.4% (Rfree=25.4%). IscA exists as an (alpha1alpha2)2 homotetramer with the (alpha1alpha2) dimer comprising the asymmetric unit. Cys35, implicated in Fe-S cluster assembly, is located in a central cavity formed at the tetramer interface with the gamma-sulfur atoms of residues from the alpha1 and alpha2' monomers (and alpha1'alpha2) positioned close to one another (approximately equal 7 A). C-terminal residues 99-107 are disordered, and the exact positions of Cys99 and Cys101 could not be determined. However, computer modeling of C-terminal residues in the tetramer suggests that Cys99 and Cys101 in the alpha1 monomer and those of the alpha1' monomer (or alpha2 and alpha2') are positioned sufficiently close to coordinate [2Fe-2S] clusters between the two dimers, whereas this is not possible within the (alpha1alpha2) or (alpha1'alpha2') dimer. This symmetrical arrangement allows for binding of two [2Fe-2S] clusters on opposite sides of the tetramer. Modeling further reveals that Cys101 is positioned sufficiently close to Cys35 to allow Cys35 to participate in cluster assembly, formation, or transfer.  相似文献   

12.
The relationship between the three-dimensional structures of iron-sulfur proteins and the redox potentials of their iron-sulfur clusters is of fundamental importance. We report calculations of the redox potentials of the [Fe4S4(S-cys)4]-2/-3 couple in four crystallographically characterized proteins: Azotobacter vinelandii ferredoxin I, Peptococcus aerogenes ferredoxin, Bacillus thermoproteolyticus ferredoxin, and Chromatium vinosum high potential iron protein (HiPIP). Our calculations use the "protein dipoles Langevin dipoles" microscopic electrostatic model, which includes both protein and solvent water. The variations in calculated redox potentials are in excellent agreement with experimental data. In particular, our results confirm the important role of amide groups close to the cluster in separating the potential of C. vinosum HiPIP from those of the other three proteins. However, the potentials of these latter exhibit a substantial range despite extremely similar amide group environments of their clusters. Our results show that the potentials in these proteins are tuned in part by varying the access of solvent water to the neighborhood of the cluster. Our calculations provide the first successful quantitative modeling of the protein control of iron-sulfur cluster redox potentials.  相似文献   

13.
When the di- or trimethylamine dehydrogenases (trimethylamine:(acceptor) oxidoreductase (demethylating), EC 1.5.99.7) of certain methylotrophic bacteria are reduced by two electrons with substrate unusual EPR signals arise at g = 2 and g = 4 (Steenkamp, D.J. and Beinert, H. (1982) Biochem. J. 207, 233-239; 241-252) indicative of spin-spin interaction between the FMN and iron-sulfur compounds of these enzymes. An attempt is made to understand, describe and simulate these spectra in terms of a triplet state with possible contributions from both dipolar and anisotropic exchange (J) interactions. No direct measurement of J is available, but various approaches to setting limits to J are outlined. According to these, J approximately 0.4 to 3 cm-1 or 15 to 50 cm-1. The spectra show, in the g = 2 region, a pair of rather sharp inner and a pair of broad outer lines; the latter broaden as well as move out from the center with increasing time (after substrate addition) and substrate concentration, while there is little change of g = 4. The best fits to such spectra were obtained by assuming distribution of D and E values, depending on substrate effects and arriving presumably from 'g-strain'. The fact that both shapes and intensities at g = 2 and g = 4 could be reproduced simultaneously at two frequencies indicates that the assumptions underlying our approaches and interpretations are permissible and reasonable, although we cannot claim their uniqueness. The distance between the centers of the spin densities of the flavin radical and the Fe-S cluster is thought to lie between the limits 3 to 5 A if the asymmetries in the spin-spin interaction are magnetic dipole-dipole in origin. Because there is an indication that the interaction is anisotropic exchange, the upper limit is less stringent.  相似文献   

14.
Sirohaem is a cofactor of nitrite and sulfite reductases, essential for assimilation of nitrogen and sulfur. Sirohaem is synthesized from the central tetrapyrrole intermediate uroporphyrinogen III by methylation, oxidation and ferrochelation reactions. In Arabidopsis thaliana, the ferrochelation step is catalysed by sirohydrochlorin ferrochelatase (SirB), which, unlike its counterparts in bacteria, contains an [Fe-S] cluster. We determined the cluster to be a [4Fe-4S] type, which quickly oxidizes to a [2Fe-2S] form in the presence of oxygen. We also identified the cluster ligands as four conserved cysteine residues located at the C-terminus. A fifth conserved cysteine residue, Cys(135), is not involved in ligating the cluster directly, but influences the oxygen-sensitivity of the [4Fe-4S] form, and possibly the affinity for the substrate metal. Substitution mutants of the enzyme lacking the Fe-S cluster or Cys(135) retain the same specific activity in vitro and dimeric quaternary structure as the wild-type enzyme. The mutant variants also rescue a defined Escherichia coli sirohaem-deficient mutant. However, the mutant enzymes cannot complement Arabidopsis plants with a null AtSirB mutation, which exhibits post-germination arrest. These observations suggest an important physiological role for the Fe-S cluster in Planta, highlighting the close association of iron, sulfur and tetrapyrrole metabolism.  相似文献   

15.
The iron-sulfur cluster composition of Escherichia coli nitrate reductase   总被引:5,自引:0,他引:5  
Nitrate reductase from Escherichia coli has been investigated by low-temperature magnetic circular dichroism and electron paramagnetic resonance (EPR) spectroscopies, as well as by Fe-S core extrusion, to determine the Fe-S cluster composition. The results indicate approximately one 3Fe and three or four [4Fe-4S]2+,1+ centers/molecule of isolated enzyme. The magnetic circular dichroism spectra and magnetization characteristics show the oxidized and reduced 3Fe and [4Fe-4S] centers to be electronically analogous to those in bacterial ferredoxins. The form and spin quantitation of the EPR spectra from [4Fe-4S]1+ centers in the reduced enzyme were found to vary with the conditions of reduction. For the fully reduced enzyme, the EPR spectrum accounted for between 2.9 and 3.5 spins/molecule, and comparison with partially reduced spectra indicates weak intercluster magnetic interactions between reduced paramagnetic centers. In common with other Fe-S proteins, the 3Fe center was not extruded intact under standard conditions. The results suggest that nitrate reductase is the first example of a metalloenzyme where enzymatic activity is associated with a form that contains an oxidized 3Fe center. However, experiments to determine whether or not the 3Fe center is present in vivo were inconclusive.  相似文献   

16.
Wu G  Mansy SS  Wu Sp SP  Surerus KK  Foster MW  Cowan JA 《Biochemistry》2002,41(15):5024-5032
Genetic studies of bacteria and eukaryotes have led to identification of several gene products that are involved in the biosynthesis of protein-bound iron-sulfur clusters. One of these proteins, ISU, is homologous to the N-terminus of bacterial NifU. The mature forms of His-tagged wild-type and D37A Schizosaccharomyces pombe ISU1 were cloned and overexpressed as inclusion bodies in Escherichia coli. The recombinant D37A protein was purified under denaturing conditions and subsequently reconstituted in vitro. By use of a 5-fold excess of iron and sulfide the reconstituted product was found to be red-brown in color, forming a homodimer of 17 kDa per subunit with approximately two iron atoms per monomer determined by protein and iron quantitation. UV-vis absorption and M?ssbauer spectroscopies (delta = 0.29 +/- 0.05 mm/s; DeltaE(Q) = 0.59 +/- 0.05 mm/s) were used to characterize D37A ISU1 and show the presence of [2Fe-2S](2+) clusters in each subunit. Formation of the holo form of wild-type ISU1 was significantly less efficient using the same reconstitution conditions and is consistent with prior observations that the D37A substitution can stabilize protein-bound clusters. Relative to the human homologue, the yeast ISU is significantly less soluble at ambient temperatures. In both cases the native ISU1 is more sensitive to proton-mediated degradation relative to the D37A derivative. The lability of this family of proteins relative to [2Fe-2S] bearing ferredoxins most likely is of functional relevance for cluster transfer chemistry. M?ssbauer parameters obtained for wild-type ISU1 (delta = 0.31 +/- 0.05 mm/s; DeltaE(Q) = 0.64 +/- 0.05 mm/s) were similar to those obtained for the D37A derivative. Cluster transfer from ISU1 to apo Fd is demonstrated: the first example of transfer from an ISU-type protein. A lower limit for k(2) of 80 M(-1) min(-1) was established for WT cluster transfer and a value of 18 M(-1) min(-1) for the D37A derivative. Finally, we have demonstrated through cross-linking studies that ferredoxin, an electron-transport protein, forms a complex with ISU1 in both apo and holo states. Cross-linking of holo ISU1 with holo Fd is consistent with a role for redox chemistry in cluster assembly and may mimic the intramolecular complex already defined in NifU.  相似文献   

17.
GTP is required for iron-sulfur cluster biogenesis in mitochondria   总被引:1,自引:0,他引:1  
Iron-sulfur (Fe-S) cluster biogenesis in mitochondria is an essential process and is conserved from yeast to humans. Several proteins with Fe-S cluster cofactors reside in mitochondria, including aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. We found that mitochondria isolated from wild-type yeast contain a pool of apoaconitase and machinery capable of forming new clusters and inserting them into this endogenous apoprotein pool. These observations allowed us to develop assays to assess the role of nucleotides (GTP and ATP) in cluster biogenesis in mitochondria. We show that Fe-S cluster biogenesis in isolated mitochondria is enhanced by the addition of GTP and ATP. Hydrolysis of both GTP and ATP is necessary, and the addition of ATP cannot circumvent processes that require GTP hydrolysis. Both in vivo and in vitro experiments suggest that GTP must enter into the matrix to exert its effects on cluster biogenesis. Upon import into isolated mitochondria, purified apoferredoxin can also be used as a substrate by the Fe-S cluster machinery in a GTP-dependent manner. GTP is likely required for a common step involved in the cluster biogenesis of aconitase and ferredoxin. To our knowledge this is the first report demonstrating a role of GTP in mitochondrial Fe-S cluster biogenesis.  相似文献   

18.
Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to contain a [4Fe-4S] cluster in its active site that catalyzes reduction of the disulfide substrate in two one-electron reduction steps. The formal thiyl radical generated by the initial one-electron reduction of the disulfide is stabilized via reduction and coordination of the resultant thiol to the [4Fe-4S] cluster.  相似文献   

19.
Wu SP  Cowan JA 《Biochemistry》2003,42(19):5784-5791
ISA type proteins mediate cluster transfer to apoprotein targets. Rate constants have been determined for cluster transfer from Schizosaccharomyces pombe ISA to apo Fd. Substitution of the cysteine residues of ISA produced derivative proteins (C72A, C136A, and C138A) that were found to be at least as active in cluster transfer reactions as the native form at 25 degrees C (k(2) approximately 170 M(-1) min(-1) for native, k(2) approximately 169 M(-1) min(-1) for C72A, k(2) approximately 206 M(-1) min(-1) for C136A, and k(2) approximately 242 M(-1) min(-1) for C138A), although the yield of cluster transfer was found to be lower as a consequence of the enhanced lability of clusters in the derivative proteins. Minor variations in rate constant for the ISA Cys derivatives do not reflect any change in the affinity of binding to the apo Fd since k(2) was found to be independent of the concentration of apo Fd over the range of 1-25 microM. The pH dependence of cluster transfer rates was found to be similar for native and C136A ISA, with an observed pK(a) of 7.8 determined from the pH profiles for cluster transfer activity of each protein. The temperature dependence of the rate constant defining the cluster transfer reaction for the wild type versus this C136A ISA derivative is distinct (DeltaH* approximately 6.3 kcal mol(-1) and DeltaS* approximately -27.3 cal K(-1) mol(-1) for native and DeltaH* approximately 2.7 kcal mol(-1) and DeltaS* approximately -38.9 cal K(-1) mol(-1) for C136A ISA). Instability of the protein-bound cluster precluded a comparison with data from pH and temperature dependencies for the two other Cys derivatives. Experiments to determine the dependence of reaction rate constants on viscosity indicate cluster transfer is rate-limiting. A comparison of cross-species rate constants for cluster transfer to apo Fd targets from Homo sapiens and S. pombe demonstrated that the identity of the Fd is less critical for promoting cluster transfer from Sp ISA (at 25 degrees C, k(2) approximately 170 M(-1) min(-1) for Sp Fd and k(2) approximately 169 M(-1) min(-1) for Hs Fd). This contrasts with an earlier observation for ISU-mediated cluster assembly [Wu, S., et al. (2002) Biochemistry 41, 8876-8885], where the rates differed for Hs and Sp target Fd's, suggesting distinct binding sites for binding of holo ISA and ISU to apo Fd.  相似文献   

20.
Olson JW  Agar JN  Johnson MK  Maier RJ 《Biochemistry》2000,39(51):16213-16219
The Fe-S cluster formation proteins NifU and NifS are essential for viability in the ulcer causing human pathogen Helicobacter pylori. Obtaining viable H. pylori mutants upon mutagenesis of the genes encoding NifU and NifS was unsuccessful even by growing the potential transformants under many different conditions including low O(2) atmosphere and supplementation with both ferric and ferrous iron. When a second copy of nifU was introduced into the chromosome at a unrelated site, creating a mero-diploid strain for nifU, this second copy of the gene could be disrupted at high frequency. This indicates that the procedures used for transformation were capable of nifU mutagenesis, so that the failure to recover mutants is solely due to the requirement of nifU for H. pylori viability. H. pylori NifU and NifS were expressed in Escherichia coli and purified to near homogeneity, and the proteins were characterized. Purified NifU is a red protein that contains approximately 1.5 atoms of iron per monomer. This iron was determined to be in the form of a redox-active [2Fe-2S](2+,+) cluster by characteristic UV-visible, EPR, and MCD spectra. The primary structure of NifU also contains the three conserved cysteine residues which are involved in providing the scaffold for the assembly of a transient Fe-S cluster for insertion into apoprotein. Purified NifS has a yellow color and UV-visible spectra characteristic of a pyridoxal phosphate containing enzyme. NifS is a cysteine desulfurase, releasing sulfur or sulfide (depending on the reducing environment) from L-cysteine, in agreement with its proposed role as a sulfur donor to Fe-S clusters. The results here indicate that the NifU type of Fe-S cluster formation proteins is not specific for maturation of the nitrogenase proteins and, as H. pylori lacks other Fe-S cluster assembly proteins, that the H. pylori NifS and NifU are responsible for the assembly of many (non-nitrogenase) Fe-S clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号