首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The supernatant prepared from the brain tissue homogenate incubated in vitro in the presence of PVP or sucrose exhibits a decrease of AChE, SDH as well as of LDH activity. A 0.75% PVP solution inhibits AChE activity by 30%, LDH activity is inhibited by 35% and SDH activity by 40%. A two hours lasting effect of a 7.5% PVP solution at 3° C on enzymatic preparations induces in AChE 20% inhibition of its activity, in LDH an inhibition of 44% and in SDH the inhibition of its activity amounts to 74%. 1 M Sucrose inhibits AChE activity by 34%, LDH activity by 41% and SDH activity is inhibited by 31%. After two hours lasting effect of 1.4 M sucrose at 3° C on the supernatant the AChE activity is inhibited by 22% and that of LDH by 30%. The SDH activity was after a two hours lasting effect of 1 M sucrose at 3° C inhibited by 34%. The inhibition of activity of the above mentioned enzymes localized in brain cortex preparations was compared with the inhibition of activity of the isolated serum cholinesterase. 0.25 M Sucrose inhibited the activity of this enzyme by 25% and 0.75% PVP by 45%. A two hours lasting effect of 7.5% PVP or 1 M sucrose at 3° C on the cholinesterase induced a 40% and 22% inhibition respectively. After double washing of the brain cortical minced tissue, prepared in a 7.5% PVP containing solution, AChE activity was constant. By triple washing of the brain cortical crude mitochondrial fraction, exposed for two hours at 3° C to the effect of 1 M sucrose, SDH activity was also constant.Abbreviations AChE acetylcholinesterase (EC 3.1.1.7.) - INT 2(p-iodophenyl)3-p-nitrophenyl-5-phenyl tetrazolium chloride - LDH lactate dehydrogenase (EC 1.1.1.27.) - PMS phenazine methosulfate - PVP polyvinylpyrrolidone - SDH succinate dehydrogenase (EC 1.3.99.1.)  相似文献   

2.
Subcellular localization of the leucine biosynthetic enzymes in yeast   总被引:12,自引:3,他引:9  
When baker's yeast spheroplasts were lysed by mild osmotic shock, practically all of the isopropylmalate isomerase and the beta-isopropylmalate dehydrogenase was released into the 30,000 x g supernatant fraction, as was the cytosol marker enzyme, glucose-6-phosphate dehydrogenase. alpha-Isopropylmalate synthase, however, was not detected in the initial supernatant, but could be progressively solubilized by homogenization, appearing more slowly than citrate synthase but faster than cytochrome oxidase. Of the total glutamate-alpha-ketoisocaproate transaminase activity, approximately 20% was in the initial soluble fraction, whereas solubilization of the remainder again required homogenization of the spheroplast lysate. Results from sucrose density gradient centrifugation of a cell-free particulate fraction and comparison with marker enzymes suggested that alpha-isopropylmalate synthase was located in the mitochondria. It thus appears that, in yeast, the first specific enzyme in the leucine biosynthetic pathway (alpha-isopropylmalate synthase) is particulate, whereas the next two enzymes in the pathway (isopropylmalate isomerase and beta-isopropylmalate dehydrogenase) are "soluble," with glutamate-alpha-ketoisocaproate transaminase activity being located in both the cytosol and particulate cell fractions.  相似文献   

3.
Throneberry GO 《Plant physiology》1967,42(11):1472-1478
Conidia of Verticillium albo-atrum Reinke and Berthold, collected from shake cultures grown in Czapek broth, were sonified for 4 or 8 minutes or ground frozen in a mortar to obtain cell-free homogenates. These were assayed for certain enzymes associated with respiratory pathways. Malic dehydrogenase was the most active, glucose-6-P and NADH dehydrogenase were less active, NADH-cytochrome c reductase, NADPH dehydrogenase, and cytochrome oxidase were low in activity, and succinic dehydrogenase and succinic cytochrome c reductase were very low to negligible in activity. No NADH oxidase activity was detected.

With the exception of NADH-cytochrome c reductase and possibly succinic dehydrogenase and cytochrome c reductase, there was no evident increase in specific activity of the enzymes during germination. Some NADH-cytochrome c reductase and a small amount of succinic-dehydrogenase and cytochrome c reductase were associated with the particulate fraction from 105,000 × g centrifugation. The other enzymes, including cytochrome oxidase, almost completely remained in the supernatant fraction.

Menadione and vitamin K-S(II) markedly stimulated NADH-cytochrome c reductase activity in the supernatant fraction but had much less effect on NADPH-cytochrome c reductase in this fraction or on either of these enzyme systems in the particulate fraction. Electron transport inhibitors affected particulate NADH- and NADPH-cytochrome c reductase activity but had no effect on these in the supernatant fraction.

  相似文献   

4.
10-Formyltetrahydrofolate dehydrogenase (EC 1.5.1.6) catalyzes the NADP-dependent conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO2. Previous studies of 10-formyltetrahydrofolate dehydrogenase purified from rat or pig liver homogenized in phosphate buffers indicated the presence of copurifying 10-formyltetrahydrofolate hydrolase activity, which catalyzes conversion of 10-formyltetrahydrofolate to tetrahydrofolate and formate. We find that the supernatant from rat liver homogenized in mannitol/sucrose/EDTA medium contains essentially all of the total cellular 10-formyltetrahydrofolate dehydrogenase activity, but no measurable hydrolase activity. Treating mannitol/sucrose/EDTA-washed mitochondria with Triton X-100 (0.5%) releases hydrolase activity in soluble form. 10-Formyltetrahydrofolate dehydrogenase purified from the mannitol/sucrose/EDTA supernatant has no 10-formyltetrahydrofolate hydrolase activity. Results of kinetic experiments using the hydrolase-free dehydrogenase give a complex rate equation with respect to (6R,S)-10-formyltetrahydrofolate. Double-reciprocal plots fit a 2/1 hyperbolic function with apparent Km values of 3.9 and 68 microM. Our results indicate that 10-formyltetrahydrofolate hydrolase and dehydrogenase are not alternate catalytic activities of a single protein, but represent two closely related and separately compartmentalized hepatic enzymes.  相似文献   

5.
Lactobacillus plantarum ldhL gene: overexpression and deletion.   总被引:7,自引:4,他引:7       下载免费PDF全文
Lactobacillus plantarum is a lactic acid bacterium that converts pyruvate to L-(+)- and D-(-)-lactate with stereospecific enzymes designated L-(+)- and D-(-)-lactate dehydrogenase (LDH), respectively. A gene (designated ldhL) that encodes L-(+)-lactate dehydrogenase from L. plantarum DG301 was cloned by complementation in Escherichia coli. The nucleotide sequence of the ldhL gene predicted a protein of 320 amino acids closely related to that of Lactobacillus pentosus. A multicopy plasmid bearing the ldhL gene without modification of its expression signals was introduced in L. plantarum. L-LDH activity was increased up to 13-fold through this gene dosage effect. However, this change had hardly any effect on the production of L-(+)- and D-(-)-lactate. A stable chromosomal deletion in the ldhL gene was then constructed in L. plantarum by a two-step homologous recombination process. Inactivation of the gene resulted in the absence of L-LDH activity and in exclusive production of the D isomer of lactate. However, the global concentration of lactate in the culture supernatant remained unchanged.  相似文献   

6.
The starting material were 86 day-old utility hybrid Tetra SL chicks. Beginning from their third week of life, 59 chickens were kept in two separate rooms "A" and "B" for 42-56 days. The values of temperature and cooling were somewhat different in rooms "A" and "B", however essentially not deviating from the accepted zoohygienic norms. The obtained results revealed a significant reduction of the activity of acid phosphatase in blood lymphocytes of 8-10 week-old chickens bursectomized in the neonatal period and kept in room "A". No such changes were found concerning ATP-ase and 5'-nucleotidase. Similar effect appeared in the lymphocytes of non-bursectomized chickens kept in room "B". Antigen stimulation (SRBC) of bursectomized and non-bursectomized chickens brought about an increased activity of all the three enzymes in blood lymphocytes. At the same time it should be emphasized that the increased activity of the enzymes tested was modulated by bursectomy and conditions of the medium.  相似文献   

7.
The effects of pH, season, environmental and experimental temperatures on the activities and kinetic parameters of D-lactate dehydrogenase, pyruvate kinase and arginine kinase from the foot of the pulmonate snail Helix pomatia were analyzed. Both in phosphate and Tris buffers D-lactate dehydrogenase was the enzyme with the most acid maximum, arginine kinase that with the most alkaline, whilst pyruvate kinase occupied an intermediate position. Pyruvate kinase activity, measured at 20 degrees C, was positively correlated with the environmental temperature at the moment of collecting the animal, whereas neither arginine kinase nor D-lactate dehydrogenase showed such a relationship. A seasonal study based on approximately 100 specimens established that arginine kinase activity remained the same throughout the year. Pyruvate kinase activity was slightly lower, and D-lactate dehydrogenase activity significantly higher, in winter than in summer animals. Snails subjected in spring to a short warm-up period before enzyme extraction showed extreme variability and some extraordinarily high values of pyruvate kinase activity, suggesting that either season or elevated temperature may have an immediate effect on the activity of this enzyme. Individual variability of all three enzymes ranges from 300 to 400%. The activities of pyruvate kinase and D-lactate dehydrogenase are strongly correlated in summer, forming a "constant-proportion-group", whereas in winter, with D-lactate dehydrogenase activity increasing and pyruvate kinase activity decreasing these two enzymes become "uncoupled". The Km value of pyruvate kinase is independent of experimental temperature between 10 and 25 degrees C, whereas that of D-lactate dehydrogenase and arginine kinase increases about three-fold within this range. Thus the temperature relationship of a single enzymic reaction cannot be used as an arguemnt for or against the occurrence of temperature compensation of whole animal metabolism. The possibility of modulation of enzyme activity by environmental temperature is discussed.  相似文献   

8.
Etiolated pea (Pisum sativum) epicotyls synthesize a buffer-soluble cellulase (cellulase A) and a salt-soluble cellulase (cellulase B) (EC 3.2.1.4) after treatment with high (0.5%) auxin levels. Only cellulase A increased in activity after treatment with low (0.005%) auxin. Cellulase A was released into the supernatant after homogenization of tissue in dilute buffer (buffer-soluble), had a pH optimum at 5.5, was relatively thermostable, and its activity was inhibited by NaCl. Cellulase B was released by 1 m NaCl (salt-soluble) from excised tissue segments or from the insoluble residue remaining after removal of the buffer-soluble form. It had a pH optimum at 7.0, was thermolabile, and required salt for maximum activity. When subjected to polyacrylamide gel electrophoresis, the cellulase fraction released by NaCl from excised segments showed two bands of cellulase activity compared to several for the buffer-soluble fraction. Electrophoretic analysis of the buffer and salt-soluble fractions for marker enzymes indicated the presence of malate dehydrogenase activity in all fractions and glutamate dehydrogenase activity in the buffer-soluble fraction only.  相似文献   

9.
An intercellular washing solution containing about 1% of the soluble protein, 0.3% or less of the glucose-6-phosphate dehydrogenase activity, but up to 20% of the peroxidase and β-d-glucosidase activity of barley (Hordeum vulgare L.) or oat (Avena sativa L.) primary leaves was obtained by vacuum infiltrating peeled leaves with pH 6.9 buffered 200 millimolar NaCl. After this wash, segments were homogenized in buffer, centrifuged, and the supernatant was assayed for soluble cytoplasmic enzymes. The pellet was washed and resuspended in 1 molar NaCl to solubilize enzymes strongly ionically bound to the cell wall. The final pellet was assayed for enzyme activity covalently bound in the cell wall. Apoplastic (intercellular washing solution, ionically bound, and covalently bound) fractions contained up to 76% of the β-d-glucosidase activity, 36% of the peroxidase activity, 11% of the nonspecific arylesterase activity, 4% of the malate dehydrogenase activity, but less than 2% of the glucose-6-phosphate dehydrogenase activity of peeled leaf segments. The partitioning and salt-solubility of the enzymes between the apoplast and symplast differed considerably between these two species. Intercellular washing fluid prepared by centrifuging unpeeled leaves had higher activity for glucose-6-phosphate dehydrogenase, less soluble protein, and less peroxidase activity per leaf than intercellular washing solution obtained by our peeling-infiltration-washing technique. The results are discussed in relation to the roles of these enzymes in phenolic metabolism in the cell wall.  相似文献   

10.
The maximal activity of the dihydrothymine dehydrogenase of fractions of human blood was found in leukocytes, especially in the supernatant after centrifugation of homogenates at 100,000 × g in the course of isolation of the cell components. The dihydrothymine dehydrogenase from human and pig leukocytes was purified tenfold with a yield of activity of about 60%. Gel filtration with Sephadex G-200 showed several peaks of enzymatic activity. A quantitative method for the estimation of thymine and dihydrothymine by means of thin layer chromatography and subsequent liquid scintillation counting is described. This method may have application in the study of the genetically determined -aminoisobutyric acid excretion in man.This investigation was supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.  相似文献   

11.
When lactate dehydrogenase obtained from Misgurnus muscles and purified to the homogeneous state is incubated for 16 hat 38 degrees C, its activity lowers down to 10% of the initial value. Extracts of egg cells, embryos or skeletal muscles of the mentioned fish species added to the enzyme solution decrease considerably its inactivation. Proteins stabilizing the activity of lactate dehydrogenase are revealed in the supernatant liquid obtained after salting out of the above extracts with 60% sulphate ammonium saturation. These proteins are in fractions with the molecular weight below 45 kDa. Among proteins with the molecular weight 10 kDa there are polypeptides which exert an activation effect on lactate dehydrogenase. This effect is intensified with the presence of insulin.  相似文献   

12.
Aconitase (aconitate hydratase) (AH) and NADP-dependent isocitrate dehydrogenase (IDH-NADP) are found in every larval and adultDrosophila tissue. Their specific activities as well as the ratios of their absolute activities differ significantly from tissue to tissue. There are tissue-specific differences in the pattern of IDH-NADP isozymes in adults and in larvae. No clear-cut tissuespecific patterns exist for AH isozymes. Most of the activity of both enzymes is found in the supernatant fraction of whole fly homogenates. Only 35% of the AH activity and 16% of the IDH-NADP activity are associated with mitochondria. The patterns of supernatant and mitochondrial IDH-NADP isozymes are the same. On the other hand, the supernatant possesses AH isozymes not found in the mitochondria.  相似文献   

13.
Lactate dehydrogenase (LDH, E.C.1.1.1.27) was found in supernatant (cytoplasmic enzyme) fractions of the trypanosomatid flagellates Trypanosoma conorhini and Crithidia fasciculata if 10 mm cysteine was present in the homogenizing medium. The T. conorhini LDH activity with pyruvate as substrate was increased 35% if 5 mm cysteine was also included in reaction mixtures. K(m) values for the T. conorhini enzyme were 3.3 x 10(-4)m with pyruvate, and 1.6 x 10(-4)m with alpha-ketobutyrate. Cysteine inhibited alpha-ketobutyrate reduction. Comparison of trypanosomatid and human serum LDH enzymes with respect to K(m), substrate activity and inhibition, pH optima, and K(i) values for oxalate and oxamate indicated that the trypanosomatid isoenzymes differed significantly from serum LDH. C. fasciculata LDH was extremely labile, since 59% of the activity was lost 90 min after isolation. The role of LDH enzymes in trypanosomatid metabolism is discussed, and the results are related to other trypanosomatid LDH enzymes. The comparison of homologous enzymes in host and parasite is discussed with regard to metabolic function and a possible model system for chemotherapy.  相似文献   

14.
Ethanol oxidation by the soluble fraction of a rat hepatoma was compared to that of the liver. Ethanol oxidation by the hepatoma was NAD+-dependent and sensitive to pyrazole, suggesting the presence of alcohol dehydrogenase. At low concentrations of ethanol (10.8 mm) the alcohol dehydrogenase activities of hepatoma and liver supernatant fractions were comparable. When the concentration of ethanol was raised to 108 mm, the activity of the liver enzyme decreased, whereas the activity in hepatoma supernatant fractions was strikingly elevated. m-Nitrobenzaldehyde-reducing activity was also conspicuously higher in hepatoma supernatant fractions. By contrast the ability to metabolize steroids and cyclohexanone was less than that in supernatant fractions of the liver.Electrophoresis of the liver supernatant fractions on ionagar at pH 7.0 revealed only one component that oxidized ethanol. On the other hand, hepatoma supernatant fractions contained two components with alcohol dehydrogenase activity; one with the same electrophoretic mobility as the liver enzyme, the other showing a slower rate of migration. The latter component, which is absent in the liver, is referred to as hepatoma alcohol dehydrogenase. By electrophoresis on starch gels at pH 8.5, it could be demonstrated that the liver and hepatoma enzymes moved in opposite directions.The liver and hepatoma enzymes differ in electrophoretic mobility, susceptibility to heat treatment, pH activity optimum and some catalytic properties. The substrate specificity of the hepatoma enzyme is narrower than that of liver alcohol dehydrogenase; cyclohexanone or 3β-hydroxysteroids of A/B cis configuration and the corresponding 3-ketones are not substrates for the hepatoma enzyme. The overall substrate specificity characteristics are, however, similar to those of the liver enzyme in that the effectiveness of substrates increases with an increase in chain length and introduction of unsaturation or an aromatic group. Both liver and hepatoma alcohol dehydrogenase cross-react with antibody to horse liver alcohol dehydrogenase EE. The Michaelis constant for ethanol with the hepatoma enzyme is 223 mm, compared to 0.3 mm for liver alcohol dehydrogenase; at 1.0 m ethanol the hepatoma enzyme is not fully saturated with substrate. The Michaelis constant for 2-hexene-1-ol is 0.3 mm, indicating that the hepatoma enzyme is better suited for dehydrogenation of longer chain alcohols. Stomach alcohol dehydrogenase has kinetic properties comparable to those of the hepatoma enzyme, as well as similar electrophoretic mobility. The hepatoma enzyme can be detected in the serum of rats bearing hepatomas.  相似文献   

15.
Bacillus sp. strain MA04 a plant growth-promoting rhizobacteria (PGPR) showed hemolytic activity on blood agar plates, and the supernatant from liquid culture in nutrient broth at 24 h exhibited emulsification activity, suggesting the production of biosurfactants. In antagonist assays, the supernatant showed antifungal activity against phytopathogenic fungi such as Penicillium expansum, Fusarium stilboides, Sclerotium rolfsii y Rhizoctonia solani, finding a reduction of mycelial growth of all fungi tested, ranging from 35 to 69%, this activity was increased with time of culture, accomplishing percentages of inhibition up to 85% with supernatants obtained at 72 h. Then, the crude biorsurfactant (CB) was isolated from the supernatant in order to assay its antagonistic effect on the phytopathogens previously tested, finding an increase in the inhibition up to 97% at 500 mg/L of CB. The composition of CB was determined by infrared spectroscopy, identifying various functional groups related to lipopeptides, which were purified by high-performance liquid chromatography and analyzed by MALDI-TOF/TOF–MS, revealing a mixture of fengycins A and B whose high antifungal activity is been widely recognized. These results show that PGPR Bacillus sp. MA04 could also contribute to plant health status through the production of metabolites with antimicrobial activity.  相似文献   

16.
The intracellular distribution of enzymes involved in the Crassulacean acid metabolism (CAM) has been studied in Bryophyllum calycinum Salisb. and Crassula lycopodioides Lam. After separation of cell organelles by isopycnic centrifugation, enzymes of the Crassulacean acid metabolism were found in the following cell fractions: Phosphoenolpyruvate carboxylase in the chloroplasts; NAD-dependent malate dehydrogenase in the mitochondria and in the supernatant; NADP-dependent malate dehydrogenase and phosphoenolpyruvate carboxykinase in the chloroplasts; NADP-dependent malic enzyme in the supernatant and to a minor extent in the chloroplasts; NAD-dependent malic enzyme in the supernatant and to some degree in the mitochondria; and pyruvate; orthophosphate dikinase in the chloroplasts. The activity of the NAD-dependent malate dehydrogenase was due to three isoenzymes separated by (NH4)2SO4 gradient solubilization. These isoenzymes represented 17, 78, and 5% of the activity recovered, respectively, in the order of elution. The isoenzyme eluting first was associated with the mitochondria and the second isoenzyme was of cytosolic origin, while the intracellular location of the third isoenzyme was probably the peroxisome. Based on these findings, the metabolic path of Crassulacean acid metabolism within cells of CAM plants is discussed. New address: Institut für Pflanzenphysiologie und Zellbiologie, Freie Universität Berlin, Königin-Luise-Straße 12-16a. D-1000 Berlin 33  相似文献   

17.
Abstract— Cat sciatic nerves were exposed to iodoacetate for a period of 5–10 min and after washing out the iodoacetate, the enzymes, glyceraldehyde-3-phosphate dehydrogenase ( d -glyceraldehyde-3-phosphate: NAD oxidoreductase (phosphorylating); EC 1.2.1.12) and lactate dehydrogenase ( l -lactate: NAD oxidoreductase; EC 1.1.1.27) were extracted from the high-speed supernatant fraction of nerve homogenates. Concentrations of iodoacetate as low as 2.5 m m could completely block activity of glyceraldehyde-3-phosphate dehydrogenase but had no effect on lactate dehydrogenase. These findings are in accord with the classical concept shown earlier for muscle that iodoacetate blocks glycolysis by its action on glyceraldehyde-3-phosphate dehydrogenase. A complete block of activity of the enzyme was found after treatment with 2 to 5 m m -iodoacetate for a period of 10 min and such blocks were irreversible for at least 3 h. Glyceraldehyde-3-phosphate dehydrogenase activity was NAD specific, with NADP unable to substitute for NAD. The results are discussed in relation to the effect of iodoacetate in blocking glycolysis and in turn the fast axoplasmic transport of materials in mammalian nerve.  相似文献   

18.
The effect of urea and guanidine hydrochloride (GdmCl) on the activity of heart lactate dehydrogenase, glycerol-3-phosphate dehydrogenase, hexokinase, inorganic pyrophosphatase, and glyceraldehyde-3-phosphate dehydrogenase was studied in low-water systems. Most of the experiments were made in a system formed with toluene, phospholipids, Triton X-100, and water in a range that varied over 1.0-6.5% (by vol.) [Garza-Ramos, G., Darszon, A., Tuena de Gómez-Puyou, M. & Gómez-Puyou, A. (1990) Biochemistry 29, 751-757]. In such conditions at saturating substrate concentrations, the activity of the enzymes was more than 10 times lower than in all-water media. However the activity of the first four aforementioned enzymes was increased between 4 and 20 times by the denaturants. The most marked activating effect was found with lactate dehydrogenase; with 3.8% (by vol.) water maximal activation was observed with 1.5 M GdmCl (about 20-fold); 4 M urea activated, but to a lower extent. Activation by guanidine thiocyanate was lower than with GdmCl. The activating and inactivating effects of GdmCl on lactate dehydrogenase depended on the amount of water; as the amount of water was increased from 2.0% to 6.0% (by vol.), activation and inactivation took place with progressively lower GdmCl concentrations. When activity was measured as a function of the volume of 1.5 M GdmCl solution, a bell-shaped activation curve was observed. In a low-water system formed with n-octane, hexanol, cetyltrimethylammonium bromide and 3.0% water, a similar activation of lactate dehydrogenase by GdmCl and urea was observed. The water solubility diagrams were modified by GdmCl and urea, and this could reflect on enzyme activity. However, from a comparison of denaturant concentrations on the activity of the enzymes studied, it would seem that, independently of their effect on the characteristics of the low-water systems, denaturants bring about activation through their known mechanism of action on the protein. It is suggested that the effect of denaturants is due to the release of constraints in enzyme catalysis imposed by a low-water environment.  相似文献   

19.
Summary The effects of 9-tetrahydrocannabinol on the activities of lactate and succinate dehydrogenases in the theca interna and membrana granulosa of rat preovulatory follicles have been analysed microdensitometrically using the same injection regime employed in a previous study on steroidogenic enzymes. A small but statistically significant (18%) decrease in succinate dehydrogenase activity was observed in the theca interna, but none in any region of the membrana granulosa. Lactate dehydrogenase activity was unaffected by THC administration. Thus, a dosage and regimen sufficient to cause significant decreases in the activities of steroidogenic enzymes had little effect on succinate and lactate dehydrogenases in rat preovulatory follicles.  相似文献   

20.
It is shown that neutral polymers administered intraperitoneally to intact animals considerably affect glutamate dehydrogenase activity in the liver cell mitochondria as well as in the supernatant. Of the tested polymers, only polyvinyl methylacetamide and dextran inhibit a decrease in the level of mitochondrial enzyme activity which develops with administration of endotoxin. Polyvinyl pyrrolidone with molecular weight of 100 kDa, polyvinyl methylacetamide, dextran and polyvinyl caprolactam prevent an increase of glutamate dehydrogenase activity in the supernatant in case of endotoxin administration to animals. It is possibly a result of the effect of the mitochondrial structure stabilization by the above polymers. A physiological effect of polyvinyl pyrrolidone revealed as an effect on the activity level of mitochondrial glutamate dehydrogenase and in the supernatant after endotoxin administration to animals, depends on the molecular weight of the polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号