首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.  相似文献   

2.
Vaccinia virus (VACV) stimulates long-term immunity against highly pathogenic orthopoxvirus infection of humans (smallpox) and mice (mousepox [ectromelia virus {ECTV}]) despite the lack of a natural host-pathogen relationship with either of these species. Previous research revealed that VACV is able to induce polyfunctional CD8(+) T-cell responses after immunization of humans. However, the degree to which the functional profile of T cells induced by VACV is similar to that generated during natural poxvirus infection remains unknown. In this study, we monitored virus-specific T-cell responses following the dermal infection of C57BL/6 mice with ECTV or VACV. Using polychromatic flow cytometry, we measured levels of degranulation, cytokine expression (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]), and the cytolytic mediator granzyme B. We observed that the functional capacities of T cells induced by VACV and ECTV were of a similar quality in spite of the markedly different replication abilities and pathogenic outcomes of these viruses. In general, a significant fraction (≥50%) of all T-cell responses were positive for at least three functions both during acute infection and into the memory phase. In vivo killing assays revealed that CD8(+) T cells specific for both viruses were equally cytolytic (~80% target cell lysis after 4 h), consistent with the similar levels of granzyme B and degranulation detected among these cells. Collectively, these data provide a mechanism to explain the ability of VACV to induce protective T-cell responses against pathogenic poxviruses in their natural hosts and provide further support for the use of VACV as a vaccine platform able to induce polyfunctional T cells.  相似文献   

3.
The orthopoxvirus (OPV) vaccinia virus (VACV) requires an intact F13L gene to produce enveloped virions (EV) and to form plaques in cell monolayers. Simultaneous introduction of an exogenous gene and F13L into F13L-deficient VACV results in expression of the foreign gene and restoration of plaque size. This is used as a method to rapidly generate VACV recombinants without the need for drug selection. However, whether other OPVs require the orthologs of F13L to generate EV and form plaques, whether F13L orthologs and EV are important for OPV pathogenesis in natural hosts, and whether a system based on F13L ortholog deficiency can be used to generate recombinant OPVs other than VACV have not been reported. The F13L ortholog in ectromelia virus (ECTV), the agent of mousepox, is EVM036. We show that ECTV lacking EVM036 formed small plaques and was highly attenuated in vivo but still induced strong antibody responses. Reintroduction of EVM036 in tandem with the DsRed gene resulted in a virus that expressed DsRed in infected cells but was indistinguishable from wild-type ECTV in terms of plaque size and in vivo virulence. Thus, our data show that, like F13L in VACV, EVM036 is required for ECTV plaque formation and that EVM036 and EV are important for ECTV virulence. Our experiments also suggest that OPVs deficient in F13L orthologs could serve as safer anti-OPV vaccines. Further, our results demonstrate that ECTV deficient in EVM036 can be exploited for the rapid generation of fully virulent ECTV expressing foreign genes of interest.  相似文献   

4.
Assembly of the mature human immunodeficiency virus type 1 (HIV-1) capsid involves the oligomerization of the capsid protein, CA. During retroviral maturation, the CA protein undergoes structural changes and forms exclusive intermolecular interfaces in the mature capsid shell, different from those in the immature precursor. The most conserved region of CA, the major homology region (MHR), is located in the C-terminal domain of CA (CTD). The MHR is involved in both immature and mature virus assembly; however, its exact function during both assembly stages is unknown. To test its conformational preferences and to provide clues on its role during CA assembly, we have used a minimalist approach by designing a peptide comprising the whole MHR (MHRpep, residues Asp152 to Ala174). Isolated MHRpep is mainly unfolded in aqueous solution, with residual structure at its C terminus. MHRpep binds to monomeric CTD with an affinity of ~30μM (as shown by fluorescence and ITC); the CTD binding region comprises residues belonging to α-helices 10 and 11. In the immature virus capsid, the MHR and α-helix 11 regions of two CTD dimers also interact [Briggs JAG, Riches JD, Glass B, Baratonova V, Zanetti G and Kr?usslich H-G (2009) Proc. Natl. Acad. Sci. USA 106, 11090-11095]. These results can be considered a proof-of-concept that the conformational preferences and binding features of isolated peptides derived from virus proteins could be used to mimic early stages of virus assembly.  相似文献   

5.
Folding and assembly of endosialidases, the trimeric tail spike proteins of Escherichia coli K1-specific bacteriophages, crucially depend on their C-terminal domain (CTD). Homologous CTDs were identified in phage proteins belonging to three different protein families: neck appendage proteins of several Bacillus phages, L-shaped tail fibers of coliphage T5, and K5 lyases, the tail spike proteins of phages infecting E. coli K5. By analyzing a representative of each family, we show that in all cases, the CTD is cleaved off after a strictly conserved serine residue and alanine substitution prevented cleavage. Further structural and functional analyses revealed that (i) CTDs are autonomous domains with a high alpha-helical content; (ii) proteolytically released CTDs assemble into hexamers, which are most likely dimers of trimers; (iii) highly conserved amino acids within the CTD are indispensable for CTD-mediated folding and complex formation; (iv) CTDs can be exchanged between proteins of different families; and (v) proteolytic cleavage is essential to stabilize the native protein complex. Data obtained for full-length and proteolytically processed endosialidase variants suggest that release of the CTD increases the unfolding barrier, trapping the mature trimer in a kinetically stable conformation. In summary, we characterize the CTD as a novel C-terminal chaperone domain, which assists folding and assembly of unrelated phage proteins.  相似文献   

6.
As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV.  相似文献   

7.
Wong HC  Shin R  Krishna NR 《Biochemistry》2008,47(8):2289-2297
As in other retroviruses, the HIV-1 capsid (CA) protein is composed of two domains, the N-terminal domain (NTD) and the C-terminal domain (CTD), joined by a flexible linker. The dimerization of the CTD is thought to be a critical step in the assembly of the immature and mature viral capsids. The precise nature of the functional form of CTD dimerization interface has been a subject of considerable interest. Previously, the CTD dimer was thought to involve a face-to-face dimerization observed in the early crystallographic studies. Recently, the crystallographic structure for a domain-swapped CTD dimer has been determined. This dimer, with an entirely different interface that includes the major homology region (MHR) has been suggested as the functional form during the Gag assembly. The structure determination of the monomeric wt CTD of HIV-1 has not been possible because of the monomer-dimer equilibrium in solution. We report the NMR structure of the [W184A/M185A]-CTD mutant in its monomeric form. These mutations interfere with dimerization without abrogating the assembly activity of Gag and CA. The NMR structure shows some important differences compared to the CTD structure in the face-to-face dimer. Notably, the helix-2 is much shorter, and the kink seen in the crystal structure of the wt CTD in the face-to-face dimer is absent. These NMR studies suggest that dimerization-induced conformational changes may be present in the two crystal structures of the CTD dimers and also suggest a mechanism that can simultaneously accommodate both of the distinctly different dimer models playing functional roles during the Gag assembly of the immature capsids.  相似文献   

8.
The emergence of zoonotic orthopoxvirus infections and the threat of possible intentional release of pathogenic orthopoxviruses have stimulated renewed interest in understanding orthopoxvirus infections and the resulting diseases. Ectromelia virus (ECTV), the causative agent of mousepox, offers an excellent model system to study an orthopoxvirus infection in its natural host. Here, we investigated the role of the vaccinia virus ortholog N1L in ECTV infection. Respiratory infection of mice with an N1L deletion mutant virus (ECTVΔN1L) demonstrated profound attenuation of the mutant virus, confirming N1 as an orthopoxvirus virulence factor. Upon analysis of virus dissemination in vivo, we observed a striking deficiency of ECTVΔN1L spreading from the lungs to the livers or spleens of infected mice. Investigating the immunological mechanism controlling ECTVΔN1L infection, we found the attenuated phenotype to be unaltered in mice deficient in Toll-like receptor (TLR) or RIG-I-like RNA helicase (RLH) signaling as well as in those missing the type I interferon receptor or lacking B cells. However, in RAG-1(-/-) mice lacking mature B and T cells, ECTVΔN1L regained virulence, as shown by increasing morbidity and virus spread to the liver and spleen. Moreover, T cell depletion experiments revealed that ECTVΔN1L attenuation was reversed only by removing both CD4(+) and CD8(+) T cells, so the presence of either cell subset was still sufficient to control the infection. Thus, the orthopoxvirus virulence factor N1 may allow efficient ECTV infection in mice by interfering with host T cell function.  相似文献   

9.
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.  相似文献   

10.
Ectromelia virus (ECTV), a natural mouse pathogen and the causative agent of mousepox, is closely related to variola virus (VARV), which causes smallpox in humans. Mousepox is an excellent surrogate small-animal model for smallpox. Both ECTV and VARV encode a multitude of host response modifiers that target components of the immune system and that are thought to contribute to the high mortality rates associated with infection. Like VARV, ECTV encodes a protein homologous to the ectodomain of the host gamma interferon (IFN-gamma) receptor 1. We generated an IFN-gamma binding protein (IFN-gammabp) deletion mutant of ECTV to study the role of viral IFN-gammabp (vIFN-gammabp) in host-virus interaction and also to elucidate the contribution of this molecule to the outcome of infection. Our data show that the absence of vIFN-gammabp does not affect virus replication per se but does have a profound effect on virus replication and pathogenesis in mice. BALB/c mice, which are normally susceptible to infection with ECTV, were able to control replication of the mutant virus and survive infection. Absence of vIFN-gammabp from ECTV allowed the generation of an effective host immune response that was otherwise diminished by this viral protein. Mice infected with a vIFN-gammabp deletion mutant virus, designated ECTV-IFN-gammabp(Delta), produced increased levels of IFN-gamma and generated robust cell-mediated and antibody responses. Using several strains of mice that exhibit differential degrees of resistance to mousepox, we show that recovery or death from ECTV infection is determined by a balance between the host's ability to produce IFN-gamma and the virus' ability to dampen its effects.  相似文献   

11.
We have recently characterized specific binding sites for human interferon-gamma on particulates prepared from the protocerebrum and hemolymph of tobacco hornworm larvae, Manduca sexta ?(Parker, M.S., Ourth, D.D., 1999. Comp. Biochem. Physiol. B 122, 155-163). The sensitivity to sulfated polysaccharides indicated an involvement of oligobasic epitopes of hIFN-gamma in the binding. In the present study, we found that polycationic peptides inhibited the binding of [125I]hIFN-gamma to particulates from either the hemolymph or the protocerebrum of Manduca sexta larvae. With amino acid homopolymers, the rank order of potency was poly-L-lysine > poly-L-arginine > poly-L-ornithine, while the acidic side chain polymer poly-L-aspartate was not inhibitory. However, the potency of all polycationic peptides was at least three-fold greater at the hemolymph particulates. Also, acidic polysaccharides such as heparin were much more efficacious in the inhibition of hIFN-gamma binding to hemolymph relative to protocerebral particulates. The peptide polycations inhibited the binding of [125I](Leu31,Pro34)human peptide YY, a ligand selective for the Y1 subtype of the neuropeptide Y receptor, to rabbit kidney or to parietal cortex particulates with the expected rank order of poly-L-arginine > poly-L-lysine > poly-L-ornithine, and with little cross-tissue difference in affinity. The selectivity observed with M. sexta particulates indicates a preferential involvement of oligobasic lysine-rich C-terminal sequences of IFN-gamma, while large insect tissue-related affinity differences point to involvement of diverse oligoacidic sequences in binding to protocerebrum and hemolymph sites. This study provides evidence for the presence of molecules in lepidopteran larvae that are similar in structure to vertebrate co-receptors of IFN-gamma, and adds to the characterization of these binding sites.  相似文献   

12.
How sorting receptors recognize amino acid determinants on polypeptide ligands and respond to pH changes for ligand binding or release is unknown. The plant vacuolar sorting receptor BP-80 binds polypeptide ligands with a central Asn-Pro-Ile-Arg (NPIR) motif. tBP-80, a soluble form of the receptor lacking transmembrane and cytoplasmic sequences, binds the peptide SSSFADSNPIRPVTDRAASTYC as a monomer with a specificity indistinguishable from that of BP-80. tBP-80 contains an N-terminal region homologous to ReMembR-H2 (RMR) protein lumenal domains, a unique central region, and three C-terminal epidermal growth factor (EGF) repeats. By protease digestion of purified secreted tBP-80, and from ligand binding studies with a secreted protein lacking the EGF repeats, we defined three protease-resistant structural domains: an N-terminal/RMR homology domain connected to a central domain, which together determine the NPIR-specific ligand binding site, and a C-terminal EGF repeat domain that alters the conformation of the other two domains to enhance ligand binding. A fragment representing the central domain plus the C-terminal domain could bind ligand but was not specific for NPIR. These results indicate that two tBP-80 binding sites recognize two separate ligand determinants: a non-NPIR site defined by the central domain-EGF repeat domain structure and an NPIR-specific site contributed by the interaction of the N-terminal/RMR homology domain and the central domain.  相似文献   

13.
At least two species-specific gene products are required for signal transduction by interferon gamma (IFN-gamma). The first is the IFN-gamma receptor, which binds ligand with high affinity in a species-specific manner. The second is an undetermined species-specific signal transducer(s). To determine whether the human IFN-gamma receptor (hIFN-gamma R) interacts directly with this signal transducer(s) and, if so, with what functional domain(s), we constructed expression vectors for the hIFN-gamma R and three hybrid human-murine IFN-gamma receptors. The hybrid receptors contained the extracellular, human IFN-gamma (hIFN-gamma) binding domain of the hIFN-gamma R, either the human or murine transmembrane domain, and either the human or murine intracellular domain. The vectors encoding these receptors were stably transfected into two mouse cell lines, one of which (SCC-16-5) contains a single copy of human chromosome 21. The resulting cell lines were treated with hIFN-gamma, and murine major histocompatibility complex class I antigen expression was analyzed by immunofluorescence flow cytometry. All transfected cell lines lacking human chromosome 21 remained insensitive to hIFN-gamma. However, all four of the IFN-gamma receptors were able to signal when expressed in the cell line containing human chromosome 21. We conclude that the extracellular domain of the IFN-gamma receptor is involved not only in the species specificity of IFN-gamma binding but also in signalling through interaction with an as yet unidentified species-specific factor(s) encoded by a gene(s) on human chromosome 21.  相似文献   

14.
In an attempt to define domains in insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1) that are involved in IGF binding, we subjected the carboxyl end of the coding region of IGFBP-1 cDNA to mutagenesis. Mutant cDNAs were isolated, characterized by sequencing, and cloned in an expression vector under control of the simian virus-40 (SV40) early promoter. The constructs were transfected into COS-1 cells, and the mutant proteins, secreted into the culture medium, were analyzed for IGF binding by ligand blotting. The results obtained show that deletion of the C-terminal 20 amino acids or introduction of frame-shifts in this region resulted in loss of IGF binding and for some mutants in the formation of dimeric IGFBP-1 molecules. These dimers are probably formed when cysteine-226 (Cys-226) is missing, and its putative partner is able to form intermolecular disulfide bonds. Site-directed mutagenesis demonstrated that most of the introduced point mutations in the C-terminal region did not affect IGF binding. Only mutation of Cys-226 to tyrosine completely abolished IGF binding, as did the introduction of a negatively charged amino acid in the vicinity of this residue. Again, dimers were observed, supporting that Cys-226 is essential for the conformation of IGFBP-1. In addition, our data suggest that an IGF-binding domain may be located in the vicinity of the intramolecular disulfide bond formed by Cys-226 and its putative partner.  相似文献   

15.
The C-terminal domain (CTD) of tumour suppressor p53 is an intrinsically disordered protein which has been shown to be able to bind multiple partner proteins and exercise diverse physiological functions in the cell. In this study, we performed molecular dynamics simulations on the isolated p53 CTD, as well as three regulatory binding complexes to investigate the conformational ensemble of isolated p53 CTD and its dynamic structures when different binding partner present. The results demonstrate that the isolated p53 CTD resembles a molten globule rather than extended structure. It mainly adopts random coil conformations with some tendency to form helical structures, which is consistent with experimental observations. For isolated p53 CTD, the dynamics is exclusively dominated by the intrinsic free energy and the p53 CTD could not folded spontaneously to each binding competent state which is located in high free energy region. However, when the binding partners present, the dynamics of p53 CTD are dominated by two mechanisms, the p53 CTD tending to adopt the structure with minimum free energy as isolate existed and the binding energy from partner protein tending to minimum. Each of them has an extreme tendency and corresponds to a possible characteristic state, the random coil state and each binding competent state. The compromise in competition between these two mechanisms results in alternate realisation of different characteristic states, while the relative strength of each mechanism determines the sampling frequency of each characteristic state.  相似文献   

16.
The IFN-gammaR complex is composed of two IFN-gammaR1 and two IFN-gammaR2 polypeptide chains. Although IFN-gammaR1 is constitutively expressed on all nucleated cells, IFN-gammaR2 membrane display is selective and tightly regulated. We created a series of fluorescent-tagged IFN-gammaR2 expression constructs to follow the molecule's cell surface expression and intracellular distribution. Truncation of the receptor immediately upstream of Leu-Ile 255-256 (254X) created a receptor devoid of signaling that overaccumulated on the cell surface. In addition, this truncated receptor inhibited wild-type IFN-gammaR2 activity and therefore exerted a dominant negative effect. In-frame deletion (255Delta2) or alanine substitution (LI255-256AA) of these amino acids created mutants that overaccumulated on the plasma membrane, but had enhanced function. Single amino acid substitutions (L255A or I256A) had a more modest effect. In-frame deletions upstream (253Delta2), but not downstream (257Delta2), of Leu-Ile 255-256 also led to overaccumulation. A truncation within the IFN-gammaR2 Jak2 binding site (270X) led to a mutant devoid of function that did not overaccumulate and did not affect wild-type IFN-gammaR2 signaling. We have created a series of novel mutants of IFN-gammaR2 that have facilitated the identification of intracellular domains that control IFN-gammaR2 accumulation and IFN-gamma responsiveness. In contrast to IFN-gammaR1, not only dominant negative, but also dominant gain-of-function, mutations were created through manipulation of IFN-gammaR2 Leu-Ile 255-256. These IFN-gammaR2 mutants will allow fine dissection of the role of IFN-gamma signaling in immunity.  相似文献   

17.
Retroviral assembly is driven by multiple interactions mediated by the Gag polyprotein, the main structural component of the forming viral shell. Critical determinants of Gag oligomerization are contained within the C-terminal domain (CTD) of the capsid protein, which also harbors a conserved sequence motif, the major homology region (MHR), in the otherwise highly variable Gag. An unexpected clue about the MHR function in retroviral assembly emerges from the structure of the zinc finger-associated SCAN domain we describe here. The SCAN dimer adopts a fold almost identical to that of the retroviral capsid CTD but uses an entirely different dimerization interface caused by swapping the MHR-like element between the monomers. Mutations in retroviral capsid proteins and functional data suggest that a SCAN-like MHR-swapped CTD dimer forms during immature particle assembly. In the SCAN-like dimer, the MHR contributes the major part of the large intertwined dimer interface explaining its functional significance.  相似文献   

18.
The virulence antigen (V-antigen, LcrV) of Yersinia pestis, the causative agent of bubonic plague, is an established protective antigen known to regulate, target, and mediate type III translocation of cytotoxic yersiniae outer proteins termed Yops; LcrV also prompts TLR2-dependent upregulation of anti-inflammatory IL-10. In this study, we determined the parameters of specific interaction of LcrV with TLR2 expressed on human transfected HEK293 cells (TLR2+/CD14-), VTEC2.HS cells (TLR2+/CD14-), primary monocytes (TLR2+/CD14+), and THP-1 cells (TLR2+/CD14+). The IRRL314-317 motif of the extracellular domain of human and mouse TLR2 accounted for high-affinity binding of LcrV. The CD14 co-receptor did not influence this interaction. LcrV did not bind to human U937 (TLR2-/CD14-) and alveolar macrophages (TLR2-/CD14+) in the absence of receptor-bound human IFN-gamma or a synthetic C-terminal fragment (hIFN-gamma132-143). The latter, but not mouse IFN-gamma (or synthetic control peptides), shared a GRRA138-141 site necessary for high-affinity specific binding. LcrV of Y. pestis shares the N-terminal LEEL32-35 binding site of Yersinia enterocolitica and also has an exposed internal DEEI203-206 binding site. Comparison of binding constants and consideration of steric restrictions indicate that binding is not cooperative and only the internal site binds LcrV to target cells. Both the LEEL32-35 and DEEI203-206 binding sites are removed by five amino acids from DKN residues associated with biological activity of bound LcrV. LcrV of Y. pestis promoted both TLR2/CD14-dependent and TLR2/CD14-independent amplification of IL-10 and concomitant downregulation of TNF-alpha in human target cells. The ability of LcrV to utilize human IFN-gamma (a major inflammatory effector of innate immunity) to minimize inflammation is insidious and may account in part for the severe symptoms of plague in man.  相似文献   

19.
Linker histone binding to nucleosomal arrays in vitro causes linker DNA to form an apposed stem motif, stabilizes extensively folded secondary chromatin structures, and promotes self-association of individual nucleosomal arrays into oligomeric tertiary chromatin structures. To determine the involvement of the linker histone C-terminal domain (CTD) in each of these functions, and to test the hypothesis that the functions of this highly basic domain are mediated by neutralization of linker DNA negative charge, four truncation mutants were created that incrementally removed stretches of 24 amino acids beginning at the extreme C terminus of the mouse H1(0) linker histone. Native and truncated H1(0) proteins were assembled onto biochemically defined nucleosomal arrays and characterized in the absence and presence of salts to probe primary, secondary, and tertiary chromatin structure. Results indicate that the ability of H1(0) to alter linker DNA conformation and stabilize condensed chromatin structures is localized to specific C-terminal subdomains, rather than being equally distributed throughout the entire CTD. We propose that the functions of the linker histone CTD in chromatin are linked to the characteristic intrinsic disorder of this domain.  相似文献   

20.
Dynamin is a 100-kDa GTPase that assembles into multimeric spirals at the necks of budding clathrin-coated vesicles. We describe three different intramolecular binding interactions that may account for the process of dynamin self-assembly. The first binding interaction is the dimerization of a 100-amino acid segment in the C-terminal half of dynamin. We call this segment the assembly domain, because it appears to be critical for multimerization. The second binding interaction occurs between the assembly domain and the N-terminal GTPase domain. The strength of this interaction is controlled by the nucleotide-bound state of the GTPase domain, as shown with mutations in GTP binding motifs and in vitro binding experiments. The third binding interaction occurs between the assembly domain and a segment that we call the middle domain. This is the segment between the N-terminal GTPase domain and the pleckstrin homology domain. The three different binding interactions suggest a model in which dynamin molecules first dimerize. The dimers are then linked into a chain by a second binding reaction. The third binding interaction might connect adjacent rungs of the spiral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号