首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In simple epithelial cells, apical and basolateral proteins are sorted into separate vesicular carriers before delivery to the appropriate plasma membrane domains. To dissect the putative sorting machinery, we have solubilized Golgi-derived transport vesicles with the detergent CHAPS and shown that an apical marker, influenza haemagglutinin (HA), formed a large complex together with several integral membrane proteins. Remarkably, a similar set of CHAPS-insoluble proteins was found after solubilization of a total cellular membrane fraction. This allowed the cloning of a cDNA encoding one protein of this complex, VIP21 (Vesicular Integral-membrane Protein of 21 kD). The transiently expressed protein appeared on the Golgi-apparatus, the plasma membrane and vesicular structures. We propose that VIP21 is a component of the molecular machinery of vesicular transport.  相似文献   

2.
Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24-29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity.  相似文献   

3.
From rat livers labeled in vivo for 30 min with [35S] cys-met, we have isolated two classes of vesicular carriers operating between the Golgi complex and the basolateral (sinusoidal) plasmalemma. The starting preparation is a Golgi light fraction (GLF) isolated by flotation in a discontinuous sucrose density gradient and processed through immunoisolation on magnetic beads coated with an antibody against the last 11 aa. of the pIgA-R tail. GLF and the ensuing subfractions (bound vs nonbound) were lysed, and the lysates processed through immunoprecipitation with anti-pIgA-R and anti-albumin antibodies followed by radioactivity counting, SDS-PAGE, and fluorography. The recovery of newly synthesized pIgA-R was > 90% and the distribution was 90% vs 10% in the bound vs nonbound subfractions, respectively. Albumin radioactivity was recovered to approximately 80%, with 20% and 80% in bound vs nonbound subfractions, respectively. Other proteins studied were: (a) secretory-apolipoprotein-B, prothrombin, C3 component of the complement, and caeruloplasmin; (b) membrane-transferrin receptor, EGR- receptor, asialoglycoprotein receptor, and the glucose transporter. In all the experiments we have performed, the secretory proteins distributed up to 85% in the nonbound subfraction (large secretory vacuoles), whereas the membrane proteins were segregated up to 95% in the bound subfraction (small vesicular carriers). These results suggest that in hepatocytes, membrane and secretory proteins are transported from the Golgi to the basolateral plasmalemma by separate vesicular carriers as in glandular cells capable of constitutive and regulated secretion.  相似文献   

4.
The biogenesis and maintenance of asymmetry is crucial to many cellular functions including absorption and secretion, signalling, development and morphogenesis. Here we have directly visualized the segregation and trafficking of apical (glycosyl phosphatidyl inositol-anchored) and basolateral (vesicular stomatitis virus glycoprotein) cargo in living cells using multicolour imaging of green fluorescent protein variants. Apical and basolateral cargo segregate progressively into large domains in Golgi/trans-Golgi network structures, exclude resident proteins, and exit in separate transport containers. These remain distinct and do not merge with endocytic structures suggesting that lateral segregation in the trans-Golgi network is the primary sorting event. Fusion with the plasma membrane was detected by total internal reflection microscopy and reveals differences between apical and basolateral carriers as well as new 'hot spots' for exocytosis.  相似文献   

5.
《The Journal of cell biology》1995,128(6):1043-1053
The sorting of apical and basolateral proteins into vesicular carriers takes place in the trans-Golgi network (TGN) in MDCK cells. We have previously analyzed the protein composition of immunoisolated apical and basolateral transport vesicles and have now identified a component that is highly enriched in apical vesicles. Isolation of the encoding cDNA revealed that this protein, annexin XIIIb, is a new isoform of the epithelial specific annexin XIII sub-family which includes the previously described intestine-specific annexin (annexin XIIIa; Wice, B. M., and J. I. Gordon. 1992. J. Cell Biol. 116:405-422). Annexin XIIIb differs from annexin XIIIa in that it contains a unique insert of 41 amino acids in the NH2 terminus and is exclusively expressed in dog intestine and kidney. Immunofluorescence microscopy demonstrated that annexin XIIIb was localized to the apical plasma membrane and underlying punctate structures. Since annexins have been suggested to play a role in membrane-membrane interactions in exocytosis and endocytosis, we investigated whether annexin XIIIb is involved in delivery to the apical cell surface. To this aim we used permeabilized MDCK cells and a cytosol-dependent in vitro transport assay. Antibodies specific for annexin XIIIb significantly inhibited the transport of influenza virus hemagglutinin from the TGN to the apical plasma membrane while the transport of vesicular stomatitis virus glycoprotein to the basolateral cell surface was unaffected. We propose that annexin XIIIb plays a role in vesicular transport to the apical plasma membrane in MDCK cells.  相似文献   

6.
Epithelial cell polarity depends on mechanisms for targeting proteins to different plasma membrane domains. Here, we dissect the pathway for apical delivery of several raft-associated, glycosyl phosphatidylinositol (GPI)-anchored proteins in polarized MDCK cells using live-cell imaging and selective inhibition of apical or basolateral exocytosis. Rather than trafficking directly from the trans-Golgi network (TGN) to the apical plasma membrane as previously thought, the GPI-anchored proteins followed an indirect, transcytotic route. They first exited the TGN in membrane-bound carriers that also contained basolateral cargo, although the two cargoes were laterally segregated. The carriers were then targeted to and fused with a zone of lateral plasma membrane adjacent to tight junctions that is known to contain the exocyst. Thereafter, the GPI-anchored proteins, but not basolateral cargo, were rapidly internalized, together with endocytic tracer, into clathrin-free transport intermediates that transcytosed to the apical plasma membrane. Thus, apical sorting of these GPI-anchored proteins occurs at the plasma membrane, rather than at the TGN.  相似文献   

7.
Myelin sheets originate from distinct areas at the oligodendrocyte (OLG) plasma membrane and, as opposed to the latter, myelin membranes are relatively enriched in glycosphingolipids and cholesterol. The OLG plasma membrane can therefore be considered to consist of different membrane domains, as in polarized cells; the myelin sheet is reminiscent of an apical membrane domain and the OLG plasma membrane resembles the basolateral membrane. To reveal the potentially polarized membrane nature of OLG, the trafficking and sorting of two typical markers for apical and basolateral membranes, the viral proteins influenza virus–hemagglutinin (HA) and vesicular stomatitis virus–G protein (VSVG), respectively, were examined. We demonstrate that in OLG, HA and VSVG are differently sorted, which presumably occurs upon their trafficking through the Golgi. HA can be recovered in a Triton X-100-insoluble fraction, indicating an apical raft type of trafficking, whereas VSVG was only present in a Triton X-100-soluble fraction, consistent with its basolateral sorting. Hence, both an apical and a basolateral sorting mechanism appear to operate in OLG. Surprisingly, however, VSVG was found within the myelin sheets surrounding the cells, whereas HA was excluded from this domain. Therefore, despite its raft-like transport, HA does not reach a membrane that shows features typical of an apical membrane. This finding indicates either the uniqueness of the myelin membrane or the requirement of additional regulatory factors, absent in OLG, for apical delivery. These remarkable results emphasize that polarity and regulation of membrane transport in cultured OLG display features that are quite different from those in polarized cells.  相似文献   

8.
We have examined the antigenicity of plasma membrane (PM) and rough microsomal (RM) fractions from rat liver using anti-ras monoclonal antibodies 142-24EO5 and Y13-259 and immunochemistry as well as electron microscope immunocytochemistry. Proteins immunoprecipitated with monoclonal antibody 142-24E05 were separated using single-dimensional gradient-gel electrophoresis. The separated proteins were then blotted onto nitrocellulose sheets and incubated with [alpha-32P]GTP. Radioautograms of blots indicated the presence of specific 21.5- and 22-kDa labeled proteins in the PM fraction. A 23.5-kDa [alpha-32P] GTP-binding protein was detected in immunoprecipitates of both PM and RM fractions. Monoclonal antibody Y13-259 reacted only with the 21.5-kDa [alpha-32P] GTP-binding protein in the plasma membrane fraction. When anti-ras monoclonal antibody 142-24E05 and the immunogold technique were applied to membrane fractions using a preembedding immunocytochemical method, specific labeling was observed in association with both vesicular structures and membrane sheets in the PM fraction but only with electron-dense vesicular structures in the RM fraction. Thus ras antigenicity is associated with hepatocyte plasma membranes and ras-like antigenicity is probably associated with vesicular (secretory/endocytic) elements in both plasma membrane and rough microsomal preparations.  相似文献   

9.
Immunoisolation techniques have led to the purification of apical and basolateral transport vesicles that mediate the delivery of proteins from the trans-Golgi network to the two plasma membrane domains of MDCK cells. We showed previously that these transport vesicles can be formed and released in the presence of ATP from mechanically perforated cells (Bennett, M. K., A. Wandinger-Ness, and K. Simons, 1988. EMBO (Euro. Mol. Biol. Organ.) J. 7:4075-4085). Using virally infected cells, we have monitored the purification of the trans-Golgi derived vesicles by following influenza hemagglutinin or vesicular stomatitis virus (VSV) G protein as apical and basolateral markers, respectively. Equilibrium density gradient centrifugation revealed that hemagglutinin containing vesicles had a slightly lower density than those containing VSV-G protein, indicating that the two fractions were distinct. Antibodies directed against the cytoplasmically exposed domains of the viral spike glycoproteins permitted the resolution of apical and basolateral vesicle fractions. The immunoisolated vesicles contained a subset of the proteins present in the starting fraction. Many of the proteins were sialylated as expected for proteins existing the trans-Golgi network. The two populations of vesicles contained a number of proteins in common, as well as components which were enriched up to 38-fold in one fraction relative to the other. Among the unique components, a number of transmembrane proteins could be identified using Triton X-114 phase partitioning. This work provides evidence that two distinct classes of vesicles are responsible for apical and basolateral protein delivery. Common protein components are suggested to be involved in vesicle budding and fusion steps, while unique components may be required for specific recognition events such as those involved in protein sorting and vesicle targeting.  相似文献   

10.
Current model propose that in nonpolarized cells, transport of plasma membrane proteins to the surface occurs by default. In contrast, compelling evidence indicates that in polarized epithelial cells, plasma membrane proteins are sorted in the TGN into at least two vectorial routes to apical and basolateral surface domains. Since both apical and basolateral proteins are also normally expressed by both polarized and nonpolarized cells, we explored here whether recently described basolateral sorting signals in the cytoplasmic domain of basolateral proteins are recognized and used for post TGN transport by nonpolarized cells. To this end, we compared the inhibitory effect of basolateral signal peptides on the cytosol-stimulated release of two basolateral and one apical marker in semi-intact fibroblasts (3T3), pituitary (GH3), and epithelial (MDCK) cells. A basolateral signal peptide (VSVGp) corresponding to the 29-amino acid cytoplasmic tail of vesicular stomatitis virus G protein (VSVG) inhibited with identical potency the vesicular release of VSVG from the TGN of all three cell lines. On the other hand, the VSVG peptide did not inhibit the vesicular release of HA in MDCK cells not of two polypeptide hormones (growth hormone and prolactin) in GH3 cells, whereas in 3T3 cells (influenza) hemagglutinin was inhibited, albeit with a 3x lower potency than VSVG. The results support the existence of a basolateral-like, signal-mediated constitutive pathway from TGN to plasma membrane in all three cell types, and suggest that an apical-like pathway may be present in fibroblast. The data support cargo protein involvement, not bulk flow, in the formation of post-TGN vesicles and predict the involvement of distinct cytosolic factors in the assembly of apical and basolateral transport vesicles.  相似文献   

11.
K Matter  M Brauchbar  K Bucher  H P Hauri 《Cell》1990,60(3):429-437
We studied the postsynthetic sorting of endogenous plasma membrane proteins in a polarized epithelial cell line, Caco-2. Pulse-chase radiolabeling was combined with domain-specific cell surface assays to monitor the arrival of three apical and one basolateral protein at the apical and basolateral cell surface. Apical proteins were inserted simultaneously into both membrane domains. The fraction targeted to the basolateral domain was different for the three apical proteins and was subsequently sorted to the apical domain by transcytosis at different rates. In contrast, a basolateral protein was found in the basolateral membrane only. Thus, sorting of plasma membrane proteins occurred from two sites: the Golgi apparatus and the basolateral membrane. These data explain apparently conflicting results of earlier studies.  相似文献   

12.
Small GTP-binding proteins of the rab family have been implicated as regulators of membrane traffic along the biosynthetic and endocytic pathways in eukaryotic cells. We have investigated the localization and function of rab8, closely related to the yeast YPT1/SEC4 gene products. Confocal immunofluorescence microscopy and immunoelectron microscopy on filter-grown MDCK cells demonstrated that, rab8 was localized to the Golgi region, vesicular structures, and to the basolateral plasma membrane. Two-dimensional gel electrophoresis showed that rab8p was highly enriched in immuno-isolated basolateral vesicles carrying vesicular stomatitis virus-glycoprotein (VSV-G) but was absent from vesicles transporting the hemagglutinin protein (HA) of influenza virus to the apical cell surface. Using a cytosol dependent in vitro transport assay in permeabilized MDCK cells we studied the functional role of rab8 in biosynthetic membrane traffic. Transport of VSV-G from the TGN to the basolateral plasma membrane was found to be significantly inhibited by a peptide derived from the hypervariable COOH-terminal region of rab8, while transport of the influenza HA from the TGN to the apical surface and ER to Golgi transport were unaffected. We conclude that rab8 plays a role in membrane traffic from the TGN to the basolateral plasma membrane in MDCK cells.  相似文献   

13.
The envelope of vesicular stomatitis virus was fused with the apical plasma membrane of Madin-Darby canine kidney cells by low pH treatment. The fate of the implanted G protein was then followed using a protein A- binding assay, which was designed to quantitate the amount of G protein in the apical and the basolateral membranes. The implanted G protein was rapidly internalized at 31 degrees C, whereas at 10 degrees C no uptake was observed. Already after 15 min at 31 degrees C, a fraction of the G protein could be detected at the basolateral membrane. After 60 min 25-48% of the G protein was basolateral as measured by the protein A-binding assay. At the same time, 25-33% of the implanted G protein was detected at the apical membrane. Internalization of G protein was not affected by 20 mM ammonium chloride or by 10 microM monensin. However, the endocytosed G protein accumulated in intracellular vacuoles and redistribution back to the plasma membrane was inhibited. We conclude that the implanted G protein was rapidly internalized from the apical surface of Madin-Darby canine kidney cells and a major fraction was routed to the basolateral domain.  相似文献   

14.
The effects of aminoglycoside antibiotics on plasma membranes were studied using rat renal basolateral and brush-border membrane vesicles. 3',4'-Dideoxykanamycin was bound to the basolateral membrane and brush-border membrane vesicles. They had a single class of binding sites with nearly the same constant, and the basolateral membrane vesicles had more binding sites than those of the brush-border membrane. Dideoxykanamycin B was transported into the intravesicular space of brush-border membrane vesicles, but not into that of basolateral membrane vesicles. The (Na+ + K+)-ATPase activity of the plasma membrane fraction prepared from the kidney of rat administered with dideoxykanamycin B intravenously decreased significantly. Aminoglycoside antibiotics entrapped in the basolateral membrane vesicles inhibited (Na+ + K+)-ATPase activity, but those added to the basolateral membrane vesicles externally failed to do so. The activity of (Na+ + K+)-ATPase was non-competitively inhibited by gentamicin. It is thus concluded that aminoglycoside antibiotics are taken up into the renal proximal tubular cells across the brush-border membrane and inhibit the (Na+ + K+)-ATPase activity of basolateral membrane. This inhibition may possibly disrupt the balance of cellular electrolytes, leading to a cellular dysfunction, and consequently to the development of aminoglycoside antibiotics' nephrotoxicity.  相似文献   

15.
A plasma membrane fraction from the rat parotid gland has been prepared by a procedure which selectively enriches for large membrane sheets. This fraction appears to have preserved several ultrastructural features of the acinar cell surface observed in situ. Regions of membrane resembling the acinar luminal border appear as compartments containing microvillar invaginations, bounded by elements of the junctional complex, and from which basolateral membranes extend beyond the junctional complex either to contact other apical compartments or to terminate as free ends. Several additional morphological features of the apical compartments suggest that they are primarily derived from the surface of acinar cells, rather than from the minority of other salivary gland cell types. Enzymatic activities characteristically associated with other cellular organelles are found at only low levels in the plasma membrane fraction. The fraction is highly enriched in two enzyme activities--K+ -dependent p-nitrophenyl phosphatase (K+ -NPPase, shown to be Na+/K+ adenosine triphosphatase; 20-fold) and gamma-glutamyl transpeptidase (GGTPase; 26-fold)--both known to mark plasma membranes in other tissues. These activities exhibit different patterns of recovery during fractionation, suggesting their distinct distributions among parotid cellular membranes. Secretion granule membranes also exhibit GGTPase, but no detectable K+ -NPPase. Since Na+/K+ adenosine triphosphatase and GGTPase, respectively, mark the basolateral and apical cellular surfaces in other epithelia, we hypothesize that these two enzymes mark distinct domains in the parotid plasmalemma, and that GGTPase, as the putative apical marker, may signify a compositional overlap between the two types of membranes which fuse during exocytosis.  相似文献   

16.
Kidney Na+,K(+)-ATPase has been recently shown to bind erythroid ankyrin and to colocalize with ankyrin at the basolateral cell surface of kidney epithelial cells. These observations suggest that Na+,K(+)-ATPase is linked via ankyrin to the spectrin/actin-based membrane cytoskeleton. In the present study we show that Na+,K(+)-ATPase and analogs of spectrin, ankyrin and actin copurify from detergent extracts of pig kidney and parotid gland membranes. Actin, spectrin and ankyrin were extracted from purified Na+,K(+)-ATPase microsomes at virtually identical conditions as their counterparts from the erythrocyte membrane, i.e., 1 mM EDTA (spectrin, actin) and 1 M KCl (ankyrin). Visualization of the stripped proteins by rotary shadowing revealed numerous elongated spectrin-like dimers (100 nm) and tetramers (215 nm), a fraction of which (17%) was associated with globular (10 nm) ankyrin-like particles. Like erythrocyte ankyrin, kidney ankyrin was cleaved into a soluble 72 kDa fragment and a membrane-bound 90 kDa fragment. Consistent with our previous immunocytochemical findings on the pig kidney, Na+,K(+)-ATPase and ankyrin were found to be colocalized at the basolateral plasma membrane of striated ducts and acini of the pig parotid gland. The present findings confirm and extend the recently proposed concept that in polarized epithelial cells Na+,K(+)-ATPase may serve as major attachment site for the spectrin-based membrane cytoskeleton to the basolateral cell domain. Connections of integral membrane proteins to the cytoskeleton may help to place these proteins at specialized domains of the cell surface and to prevent them from endocytosis.  相似文献   

17.
Newly synthesized apical and basolateral membrane proteins are sorted from one another in polarized epithelial cells. The trans-Golgi network participates in this sorting process, but some basolateral proteins travel from the Golgi to recycling endosomes (REs) before their surface delivery. Using a novel system for pulse–chase microscopy, we have visualized the postsynthetic route pursued by a newly synthesized cohort of Na,K-ATPase. We find that the basolateral delivery of newly synthesized Na,K-ATPase occurs via a pathway distinct from that pursued by the vesicular stomatitis virus G protein (VSV-G). Na,K-ATPase surface delivery occurs at a faster rate than that observed for VSV-G. The Na,K-ATPase does not pass through the RE compartment en route to the plasma membrane, and Na,K-ATPase trafficking is not regulated by the same small GTPases as other basolateral proteins. Finally, Na,K-ATPase and VSV-G travel in separate post-Golgi transport intermediates, demonstrating directly that multiple routes exist for transport from the Golgi to the basolateral membrane in polarized epithelial cells.  相似文献   

18.
A typical feature of epithelial cells is the polarized distribution of their respective plasma membrane proteins. Apical and basolateral proteins can be sorted both in the trans-Golgi network and endosomes, or in both locations. Inclusion into basolateral carriers in the TGN requires the presence of distinct cytoplasmic determinants, which also appear to be recognized in endosomes. Inactivation of the basolateral sorting information leads to the efficient apical delivery, probably due to the unmasking of a recessive apical signal. Factors associated with the cytosolic face of organelles probably not only recognize these signals to mediate the inclusion of the proteins into the correct transport vesicles, but also target the carriers to the corresponding plasma membrane domain. Our interest has focused on analyzing at the molecular level how epithelial MDCK cells generate and maintain a polarized phenotype, taking advantage of immunoglobulin receptors to study the biosynthetic and endocytic pathways and the corresponding sorting events.  相似文献   

19.
In simple epithelial cells, apical and basolateral proteins and lipids in transit to the cell surface are sorted in the trans-Golgi network. We have recently isolated detergent-insoluble complexes from Madin-Darby canine kidney cells that are enriched in glycosphingolipids, apical cargo and a subset of the proteins of the exocytic carrier vesicles. The vesicular proteins are thought to be involved in protein sorting and include VIP21-caveolin. The vesicular protein VIP36 (36 kDa vesicular integral membrane protein) has been purified from a CHAPS-insoluble residue and a cDNA encoding VIP36 has been isolated. The N-terminal 31 kDa luminal/exoplasmic domain of the encoded protein shows homology to leguminous plant lectins. The transiently expressed protein is localized to the Golgi apparatus, endosomal and vesicular structures and the plasma membrane, as predicted for a protein involved in transport between the Golgi and the cell surface. It is diffusely localized on the plasma membrane but can be redistributed by antibody modulation into caveolae and clathrin-coated pits. We speculate that VIP36 binds to sugar residues of glycosphingolipids and/or glycosylphosphatidyl-inositol anchors and might provide a link between the extracellular/luminal face of glycolipid rafts and the cytoplasmic protein segregation machinery.  相似文献   

20.
The effect of pH on the secretion of the gp 80 glycoprotein complex and lysozyme from MDCK cells was examined by treatment of the cells with either NH4Cl, chloroquine or monensin. In untreated cells gp 80 is sorted with approximately 75% efficiency into the apical pathway. Lysozyme is secreted in a nonpolar fashion at both cell surfaces. Treatment of the cells with the drugs had nearly identical effects on the transport kinetics and on the ratio of the proteins released at the two plasma membrane domains. At increasing drug concentrations, the transport of both proteins to the apical and the basolateral cell surface was equally retarded. Furthermore, we observed a dose-dependent decrease in the amount of gp 80 and lysozyme released at the basolateral cell surface, which was accompanied by a nearly equivalent increase in the secretion of the two proteins at the apical plasma membrane domain. A twofold rise in the apical to basolateral ratio was already found at drug concentrations which only marginally affected the kinetics of transport. These results show that an increase in intravesicular pH not only redirects secretory proteins sorted into the basolateral pathway (Caplan et al. Nature, 329, 632 (1987] but also secretory proteins devoid of sorting information for that pathway, presumably by modulating the vesicular traffic to the basolateral cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号