首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to delineate some mechanical behaviors found in branching airways, pressure transmission, gas motion, and mixing were studied during high-frequency oscillation (HFO) in an idealized system consisting of a large straight tube and a rigid sphere linked together by a small straight tube. Depending on the frequency f, and on the unsteadiness dimensionless parameter alpha, pressure amplitude in the large tube is either strongly attenuated or amplified in the sphere. This finding may provide a theoretical basis for the pressure resonance phenomenon observed in the lung by previous investigators. Gas compression in the closed volume causes convective mixing throughout the system. The measured dispersion was found to be proportional to f(VT/A)2, in agreement with a recent report. However, bulk convective mixing was sufficient to explain the dispersion for oscillatory volumes (VT) as small as 80 percent of the small tube volume, as has been previously suggested.  相似文献   

2.
Axial gas transport due to the interaction between radial mixing and radially nonuniform axial velocities is responsible for gas transport in thick airways during High-frequency oscillatory ventilation (HFO). Because the airways can be characterized by a bifurcating tube network, the secondary flow in the curved portion of a bifurcating tube contributes to cross-stream mixing. In this study the oscillatory flow and concentration fields through a single symmetrical airway bifurcating tube model were numerically analyzed by solving three-dimensional Navier-Stokes and mass concentration equations with the SIMPLER algorithm. The simulation conditions were for a Womersley number, alpha = 9.1 and Reynolds numbers in the parent tube between 200 and 1000, corresponding to Dn2/alpha 4 in the curved portion between 2 and 80, where Dn is Dean number. For comparison with the results from the bifurcating tube, we calculated the velocity and concentration fields for fully developed oscillatory flow through a curved tube with a curvature rate of 1/10, which is identical to the curved portion of the bifurcating tube. For Dn2/alpha 4 < or = 10 in the curved portion of the bifurcating tube, the flow divider and area changes dominate the axial gas transport, because the effective diffusivity is greater than in either a straight or curved tube, in spite of low secondary velocities. However, for Dn2/alpha 4 > or = 20, the gas transport characteristics in a bifurcation are similar to a curved tube because of the significant effect of secondary flow.  相似文献   

3.
Gas transport during high-frequency oscillation was investigated in vitro using CO2 elimination from the lung surrogate as a measure of gas transport efficiency. The length of the connecting tube between the piston pump and the three-port connector did not affect gas transport efficiency if the oscillatory volume (VDEL) was constant; inserting an additional tube between the three-port connector and the endotracheal tube decreased gas transport efficiency dramatically. In contradistinction, increasing VDEL caused a steep rise in gas transport efficiency as soon as VDEL surpassed the volume of the tubes connecting the lung surrogate with its surroundings. As gas transport effiency was found to be very sensitive to the net oscillatory volume, i.e. VDEL minus the volume of the tubes connecting the lung and the surroundings, direct wash-out was considered to be an effective gas transport mechanism during high frequency oscillation. Two preliminary experiments on dogs allowed us to substantiate this hypothesis in vivo.  相似文献   

4.
The efficiency of axial gas dispersion during ventilation with high-frequency oscillation (HFO) is improved by manipulating the oscillatory flow waveform such that intermittent oscillatory flow occurs. We therefore measured the velocity profiles and effective axial gas diffusivity during intermittent oscillatory flow in a straight tube to verify the intermittency augmentation effect on axial gas transfer. The effective diffusivity was dependent on the flow patterns and significantly increased with an increase in the duration of the stationary phase. It was also found that the ratio of effective diffusivity to molecular diffusivity is two times greater than that in sinusoidal oscillatory flow. Moreover, turbulence during deceleration or at the beginning of the stationary phase further augments axial dispersion, with the effective diffusivity being over three times as large, thereby proving that the use of intermittent oscillatory flow effectively augments axial dispersion for ventilation with HFO.  相似文献   

5.
Forced oscillations is a technique to determine respiratory input impedance from small amplitude sinusoidal pressure excursions introduced at the airway opening. Models used to predict respiratory input impedance typically ignore the direct effect of bifurcations on the flow, and treat airway branches as individual straight tubes placed appropriately in parallel and series. The flow within the individual tubes is assumed equivalent to that which would occur in infinitely long tubes. In this study we examined the influence of bifurcations on impedance for conditions of the forced oscillatory technique. We measured input impedance using forced oscillations in straight tubes and in an anatomically-relevant, four generation physical model of a human airway network. The input impedance measured experimentally compared well to that obtained theoretically using model predictions. The predictive scheme was based on appropriate parallel and series combinations of theoretically computed individual tube impedances, which were computed from solutions to oscillatory flow of a compressible gas in an infinitely long rigid tube. The agreement between experimental measurements and predictions indicates that bifurcations play a relatively minor direct role on the flow impedance for conditions of the forced oscillations technique. These results are explained in terms of the small tidal volumes used, whereby the axial distance traveled by a fluid particle during an oscillation cycle is appreciably smaller than branch segment lengths. Accordingly, only a small fraction of fluid particles travel through the bifurcation region, and the remainder experience an environment approaching flow in an infinite straight tube. The relevance of the study to the prediction of impedances in the human lung during forced oscillations is discussed.  相似文献   

6.
《Process Biochemistry》1999,34(2):133-137
Gas holdups, dispersion height, volumetric mass transfer coefficients and kLa of water and a yeast fermentation broth were studied in a co-current downflow contacting reactor. kLa and gas holdup increased with increasing superficial gas velocity and there was a parallelism between kLa and gas holdup. The values of kLa gas holdup, and dispersion height measured in the air/fermentation broth system were all lower than those in air/water system.  相似文献   

7.
《Process Biochemistry》2010,45(7):1023-1029
There is limited data on gas dispersion characteristics of fixed bed biofilm reactors under growth and non-growth conditions. In this paper, the gas–liquid dispersion of a bubble bed packed with a fibrous structured packing for biofilm application is studied. The reactor is operated with Pseudomonas putida aimed at aniline degradation in wastewater. Gas hold-up and bubble size distribution are determined. Running gas–liquid reaction conditions as well as non-reactive flow gas hold-up and bubble size distribution in the presence of surface-active and viscous components were measured. The properties of the gas dispersion proved to be stabilized by the fibrous bed presence and showed improvement of the dispersion parameter by the packing. Gas hold-up was found to increase monotonously with the rise of gas superficial velocity and viscosity and with surface tension fall. Liquid superficial velocity showed marginal effect. Apart from showing high gas hold-up and low bubble size due to surface-active and viscous dissolved elements, the biochemical reaction did not pose any significant additional effect. In agreement with the expected lack of bubble coalescence and break-up in the highly ionic solution practiced, the population size distribution and average bubble size were found to vary with the major operation factors opposite to their gas hold-up contribution. Gas hold-up was correlated with the specific bubble-to-channel size ratio and further with the variables considered. An empirical equation is proposed that relates gas hold-up with all studied variables. Assuming geometric similarity of the prototype and the real vessels, the equation as well as its corresponding range of fluid velocities can be used for bioreactor design and scale-up. The results concerning the gas hold-up are shown to be comparable with previous studies of mesh wire packing.  相似文献   

8.
The investigation of longitudinal dispersion of tracer substances in unsteady flows has biomechanical application in the study of heat and mass transport within the bronchial airways during normal, abnormal, and artificial pulmonary ventilation. To model the effects of airway curvature on intrapulmonary gas transport, we have measured local gas dispersion in axially uniform helical tubes of slight pitch during volume-cycled oscillatory flow. Following a small argon bolus injection into the flow field, the time-averaged effective diffusion coefficient (Deff/Dmol) for axial transport of the contaminant was evaluated from the time-dependent local argon concentration measured with a mass spectrometer. The value of (Deff/Dmol) is extracted from the curve of concentration versus time by two techniques yielding identical results. Experiments were conducted in two helical coiled tubes (delta = 0.031, lambda = 0.022 or delta = 0.085, lambda = 0.060) over a range of 2 < alpha < 15, 3 < A < 15, where delta is the ratio of tube radius to radius of curvature, lambda is the ratio of pitch height to radius of curvature, alpha is the Womersley parameter or dimensionless frequency, and A is the stroke amplitude or dimensionless tidal volume. Experimental results show that, when compared to transport in straight tubes, the effective diffusivity markedly increases in the presence of axial curvature. Results also compare favorably to mathematical predictions of bolus dispersion in a curved tube over the ranges of frequency and tidal volume studied.  相似文献   

9.
蓝藻伪空胞的特性及浮力调节机制   总被引:5,自引:0,他引:5  
张永生  孔繁翔  于洋  张民  史小丽 《生态学报》2010,30(18):5077-5090
伪空胞为蓝藻在水体中提供浮力,使其获得适宜的生长条件,最终导致蓝藻水华暴发,了解伪空胞的特征对控制蓝藻水华暴发有重要意义。文章简要回顾了蓝藻伪空胞自1865年被Klebahn发现到1965年被正式命名的研究历程,目前已发现150多种原核生物中含有伪空胞;伪空胞是两末端呈圆锥状的中空圆柱体,伪空胞半径与临界压强遵循方程:Pc=275(r/nm)-1.67MPa;伪空胞气体含量可根据不同原理,利用Walsby伪空胞测定装置、压力浊度计和细胞流式仪测得。总结了伪空胞组成的化学特性,评述了伪空胞gvp基因丛结构功能和GvpA、GvpC的蛋白空间结构。GvpA是伪空胞合成的主要成分,gvpA在伪空胞内存在多个拷贝,其功能仍不清楚;GvpC由33个氨基酸重复单位组成,重复单位越多,伪空胞越不易破裂;概述了伪空胞3种浮力调节机制:镇重物的改变、伪空胞的合成、伪空胞的破裂;归纳了环境因子(光照、温度、氮、磷、钾)参与伪空胞浮力网络调控的途径。提出了目前伪空胞研究面临的困难和问题,对伪空胞的未来研究方向提出探索性的建议。  相似文献   

10.
Gas holdup and liquid circulation time were measured in a down flow jet loop bioreactor with a non-Newtonian fluid. It was observed that the circulation time decreases with increase in nozzle diameter, draft tube to column diameter ratio and shear thinning of the media. The gas holdup increases with increase in gas and liquid velocities. The optimum draft tube to column diameter ratio was found to be 0.438. Correlations for gas holdup and circulation time involving operational and geometrical variables were presented.  相似文献   

11.
The significance of convective and diffusive gas transport in the respiratory system was assessed from the response of combined inert gas and particle boluses inhaled into the conducting airways. Particles, considered as "nondiffusing gas," served as tracers for convection and two inert gases with widely different diffusive characteristics (He and SF6) as tracers for convection and diffusion. Six-milliliter boluses labeled with monodisperse di-2-ethylhexyl sebacate droplets of 0.86-microns aerodynamic diameter, 2% He, and 2% SF6 were inspired by three anesthetized mechanically ventilated beagle dogs to volumetric lung depths up to 170 ml. Mixing between inspired and residual air caused dispersion of the inspired bolus, which was quantified in terms of the bolus half-width. Dispersion of particles increased with increasing lung depth to which the boluses were inhaled. The increase followed a power law with exponents less than 0.5 (mean 0.39), indicating that the effect of convective mixing per unit volume was reduced with depth. Within the pulmonary dead space, the behavior of the inert gases He and SF6 was similar to that of the particles, suggesting that gas transport was almost solely due to convection. Beyond the dead space, dispersion of He and SF6 increased more rapidly than dispersion of particles, indicating that diffusion became significant. The gas and particle bolus technique offers a suitable approach to differential analysis of gas transport in intrapulmonary airways of lungs.  相似文献   

12.
We simulated gas transport due to cardiogenic oscillations (CO) using a model developed to quantify the gas mixing due to high-frequency ventilation (16). The basic components of the model are 1) gas mixing by augmented transport, 2) symmetrical lung morphometry, and 3) a Lagrangian (moving) reference frame. The theoretical predictions of the model are in general agreement with published experimental studies that have examined the effect of CO on the nitrogen concentration obtained by intrapulmonary gas sampling and the effect of CO on regional and total anatomical dead space. Further, the model predicts that augmentation of gas transport due to CO is less, nearer to the alveolar regions of the lung, and that the effect of CO during normal tidal breathing is negligible, but that CO may contribute up to approximately 10% of the alveolar ventilation in patients with severe hypoventilation. The agreement between experimental and theoretical results suggests that it may not be necessary to invoke gas transport mechanisms specific to an asymmetrical bronchial tree to explain the major proportion of gas transport due to CO.  相似文献   

13.
A method is presented for real-time monitoring of airway gas concentration waveforms in rats and other small animals. Gas is drawn from the tracheal tube, analyzed by a mass spectrometer, and presented as concentration vs. time waveforms simultaneously for CO2, halothane, and other respiratory gases and anesthetics. By use of a respiratory simulation device, the accuracy of mass spectrometric end-tidal CO2 analysis was compared with both the actual gas composition and infrared spectrophotometry. The effects of various ventilator rates and inspiration-to-expiration ratios on sampling accuracy were also examined. The technique was validated in male Sprague-Dawley rats being ventilated mechanically. The difference between the arterial PCO2 (PaCO2) and the end-tidal PCO2 (PETCO2) was not significantly different from zero, and the correlation between PETCO2 and PaCO2 was strong (r = 0.97, P less than 0.0001). Continuous gas sampling for periods up to 5 min did not affect PaCO2, PETCO2, or airway pressures. By use of this new method for measuring end-tidal halothane concentrations in rats approximately 6.5 mo of age, the minimum alveolar concentration of halothane that prevented reflex movement in response to tail clamping was 0.97 +/- 0.04% atmospheric (n = 14). This mass spectrometric technique can be used in small laboratory animals, such as rats, weighing as little as 250 g. Gas monitoring did not distort either PETCO2 or PaCO2. Under the defined conditions of this study, accurate and simultaneous measurements of phasic respiratory concentrations of anesthetic and respiratory gases can be achieved.  相似文献   

14.
Successful implementation of bioremediation clean-up strategies depends on accurate predictions of the transport of bacteria within the subsurface. In this study, etched flat-plate glass micromodels were used to examine bacterial transport in a homogenous network. These networks were created by acid-etching interconnected channels into a glass plate and then fusing it to an unetched plate forming semi-cylindrical pores. The transparent nature of the micromodel allows for both qualitative observations of the bacteria within the pores and quantitative measurements of their concentration. The micromodels are designed to allow establishment of a well-characterized step change in bacterial concentration (Escherichia coli NR50) within the network. During the experiments, bacteria are dispersed through the network by flow. Light scattering is used to detect the change in turbidity within the pores as the bacteria travel through the network. The change in turbidity is used to construct breakthrough curves and spatial concentration profiles of bacteria within the network. The breakthrough curves are fit to the one-dimensional advection/dispersion equation to determine dispersion coefficients at different interstitial fluid velocities. From the breakthrough curves, dispersion coefficients were reproducible for replicate experiments over a range of velocities in the advection-dominated regime. The dispersivity values for two network designs resembling an interconnecting capillary network and a spatially periodic network of cylinders were 0.28 and 0.33 cm respectively, which are slightly greater than the literature values found for other pore networks. Experiments were also conducted within the diffusion-dominated regime to examine the effects of bacterial motility on dispersion. The accumulation of bacteria on the pore walls became significant at the low flow rates and extended experimental times thereby rendering the use of light scattering to determine concentrations ineffective. Bacterial chemotaxis, created by a self-imposed oxygen gradient, was also observed in the micromodel under stagnant fluid conditions.  相似文献   

15.
The growth-arrest-specific 2 (gas2) gene was initially identified on account of its high level of expression in murine fibroblasts under growth arrest conditions, followed by downregulation upon reentry into the cell cycle (Schneider et al., Cell 54, 787-793, 1988). In this study, the expression patterns of the gas2 gene and the Gas2 peptide were established in the developing limbs of 11.5- to 14. 5-day mouse embryos. It was found that gas2 was expressed in the interdigital tissues, the chondrogenic regions, and the myogenic regions. Low-density limb culture and Brdu incorporation assays revealed that gas2 might play an important role in regulating chondrocyte proliferation and differentiation. Moreover, it might play a similar role during limb myogenesis. In addition to chondrogenesis and myogeneis, gas2 is involved in the execution of the apoptotic program in hindlimb interdigital tissues-by acting as a death substrate for caspase enzymes. TUNEL analysis demonstrated that the interdigital tissues underwent apoptosis between 13.5 and 15.5 days. Exactly at these time points, the C-terminal domain of the Gas2 peptide was cleaved as revealed by Western blot analysis. Moreover, pro-caspase-3 (an enzyme that can process Gas2) was cleaved into its active form in the interdigital tissues. The addition of zVAD-fmk, a caspase enzyme inhibitor, to 12.5-day-old hindlimbs maintained in organ culture revealed that the treatment inhibited interdigital cell death. This inhibition correlated with the absence of the Gas2 peptide and pro-caspase-3 cleavage. The data suggest that Gas2 might be involved in the execution of the apoptotic process.  相似文献   

16.
In partial liquid ventilation (PLV), perfluorocarbon (PFC) acts as a diffusion barrier to gas transport in the alveolar space since the diffusivities of oxygen and carbon dioxide in this medium are four orders of magnitude lower than in air. Therefore convection in the PFC layer resulting from the oscillatory motions of the alveolar sac during ventilation can significantly affect gas transport. For example, a typical value of the Péclet number in air ventilation is Pe approximately 0.01, whereas in PLV it is Pe approximately 20. To study the importance of convection, a single terminal alveolar sac is modeled as an oscillating spherical shell with gas, PFC, tissue and capillary blood compartments. Differential equations describing mass conservation within each compartment are derived and solved to obtain time periodic partial pressures. Significant partial pressure gradients in the PFC layer and partial pressure differences between the capillary and gas compartments (P(C)-Pg) are found to exist. Because Pe> 1, temporal phase differences are found to exist between P(C)-Pg and the ventilatory cycle that cannot be adequately described by existing non-convective models of gas exchange in PLV The mass transfer rate is nearly constant throughout the breath when Pe>1, but when Pe<1 nearly 100% of the transport occurs during inspiration. A range of respiratory rates (RR), including those relevant to high frequency oscillation (HFO) +PLV, tidal volumes (V(T)) and perfusion rates are studied to determine the effect of heterogeneous distributions of ventilation and perfusion on gas exchange. The largest changes in P(C)O2 and P(C)CO2 occur at normal and low perfusion rates respectively as RR and V(T) are varied. At a given ventilation rate, a low RR-high V(T) combination results in higher P(C)O2, lower P(C)CO2 and lower (P(C)-Pg) than a high RR-low V(T) one.  相似文献   

17.
Gas holdups and volumetric mass transfer coefficients were measured in a concentric tube airlift reactor designed for the microbial desulfurization of coal. The solutions studied were comprised of an acidified basal salts solution containing thirteen different weight percentages (0 to 40) of coal (74 mum Ohio #1) at three different temperatures (30, 50, and 72 degrees C). Gas holdup epsilon(G) decreased with solids loading for the entire range studied. An enhancement in the volumetric mass transfer coefficient K(L)a with respect to that in pure solution was observed from zero to approximately 5 wt % (solids volume fraction epsilon(s) = 0.035), the maximum enhancement occurring at approximately 2 wt % (epsilon(s) = 0.014). At higher solids fractions, the mass transfer coefficient decreased with further solids additions. Gas holdups and the mass transfer coefficients increased with temperature over the studied range. The K(L)a and epsilon(G) were correlated to three process variables separately and the separate correlations combined to yield generalized correlations for the mass transfer coefficient and gas holdup for this system. The correlations may be used for design, operation, and ost estimation of such systems.  相似文献   

18.
During high-frequency small-volume ventilation (HFV), the transport rate of gas from the mouth to a lung region is a function of two conductances (conductance is the transfer rate of a gas divided by its partial pressure difference): regional longitudinal gas conductance along the airways (Grlongi) and gas conductance between lung regions (Ginter). Grlongi per unit regional lung (gas) volume [Grlongi/(Vr beta g)] was determined during HFV in 11 anesthetized paralyzed dogs lying supine. The distribution of Grlongi/(Vr beta g) was nearly uniform during HFV when stroke volumes were less than approximately two-thirds of the Fowler dead-space volume. By contrast, the distribution of Grlongi/(Vr beta g) was nonuniform when the stroke volume exceeded approximately two-thirds of the Fowler dead-space volume and the oscillation frequency was 5 Hz. Gas conductance along the airways per unit lung gas volume [average Glongi/(V beta g)], for the entire lung, increased with stroke volume at all frequencies, but for a given product of oscillation frequency and stroke volume, the average Glongi/(V beta g) was greater when stroke volume was large and oscillation frequency was low. The average Glongi/(V beta g) increased with frequency up to a maximal value; the frequency at which the maximum occurred depended on the kinematic viscosity of the inspired gas mixture.  相似文献   

19.
Investigations were carried out in a 9 m high, 4 m(3) volume, pilot plant airlift tower loop bioreactor with a draft tube. The reactor was characterized by measuring residence time distributions of the gas phase using pseudostochastic tracer signals and a mass spectrometer and by evaluating the mixing in the liquid phase with single-pulse tracer inputs. The local gas holdup and the bubble size (piercing length) were measured with two-channel electrical conductivity probes. The mean residence times and the intensities of the axial mixing in the riser and downcomer and the circulation times of the phases as well as the fraction of the recirculated gas phase were evaluated. The gas holdup in the riser is nearly uniform along the reactor. In the downcomer, it diminishes from top to bottom. The liquid phase dispersion coefficients, D(L), are smaller than those measured in the corresponding bubble columns. In the pilot plant with tap water the following relationship was found: D(Lr) = cw(SG) (n); with c = 203.4; n = 0.5;D(Lr)(cm(2) s(-1);) and W(SG)(cm s(-1)) where D(Lr) is the longitudinal dispersion coefficient in the riser and W(SG) is the superficial gas velocity. The gas phase dispersion coefficients in the riser of the pilot plant, D(Gr), are also enlarged with increasing superficial gas velocity, W(SG), however, no simple relationship exists. Parameter D(Gr) is the highest in the presence of antifoam agents, intermediate in tap water, and the smallest in ethanol solution.  相似文献   

20.
Gas transport in fruit tissue is governed by both diffusion and permeation. The latter phenomenon is caused by overall pressure gradients which may develop due to the large difference in O(2) and CO(2) diffusivity during controlled atmosphere storage of the fruit. A measurement set-up for tissue permeation based on unsteady-state gas exchange was developed. The gas permeability of pear tissue was determined based on an analytical gas transport model. The overall gas transport in pear tissue samples was validated using a finite element model describing simultaneous O(2), CO(2), and N(2) gas transport, taking into account O(2) consumption and CO(2) production due to respiration. The results showed that the model described the experimentally determined permeability of N(2) very well. The average experimentally determined values for permeation of skin, cortex samples, and the vascular bundle samples were (2.17+/-1.71)x10(-19) m(2), (2.35+/-1.96)x10(-19) m(2), and (4.51+/-3.12)x10(-17) m(2), respectively. The permeation-diffusion-reaction model can be applied to study gas transport in intact pears in relation to product quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号