首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perinatal methadone exposure and brain development: a biochemical study   总被引:1,自引:0,他引:1  
Abstract— The neurochemical effect of maternally administered methadone (5 mg/kg, DL-methadone-HCI) on the brain (including the olfactory bulbs, cerebellum, and brain stem) and cerebellum of offspring exposed during gestation and/or lactation was studied in 10-, 21-, and 60-day old rats. Brain weights were significantly reduced in all methadone-exposed groups at 10 days of age, while only those rats subjected to methadone during gestation or lactation had deficits in brain weights at day 21; no differences were found at 60 days. Brain DNA content was significantly reduced in all opiate-exposed offspring at every age examined, but RNA/DNA and protein/DNA ratios were only consistently increased in rats of the gestation group. Cerebellar weight was reduced at 10 days in the gestation-lactation pups, at 21 days in rats of the gestation and lactation groups, and at 60 days in animals of the gestation and gestation-lactation groups. Cerebellar DNA content was significantly decreased in pups of the gestation group at every age investigated, but only reduced at 21 days in the lactation group and at 60 days in the gestation-lactation group. Rats in the lactation group had the greatest number of alterations in terms of RNA and protein, with the most noticeable being decreases in mean cellular RNA content on days 21 and 60 and a reduction in the mean cellular protein content on day 60. These data suggest that prenatal and/or postnatal methadone treatment affects the biochemical maturation of the central nervous system; deficits in neurons and/or glia, as well as a reduction in myelination, might be reflected in these changes.  相似文献   

2.
Groups of pregnant Sprague-Dawley rats were treated orally with procarbazine, an antineoplastic drug, at dose levels of 0, 1.0, 2.5, 5.0, 7.5, and 10.0 mg/kg/day from days 12 through 15 of gestation. Following normal delivery, offspring were raised until day 21 and sacrificed, and their brains removed and weighed. A dose-dependent micrencephaly, characterized by hypoplasia of the cerebral hemispheres, was seen starting at 2.5 mg/kg/day. In a second study, groups of pregnant female rats were given a single dose of 10 mg/kg procarbazine on gestation day 12, 13, 14, or 15. Micrencephaly occurred in 21-day-old offspring from all groups, with the greatest effect induced on days 13, 14 and 15. Analysis of brain region weights revealed a maximum reduction in neocortex weight in offspring from groups treated on days 13 and 14. The hippocampus, cerebellum, and diencephalon-midbrain were also reduced in size, depending on the day of treatment, while the corpus striatum and pons-medulla were spared. In a final study, embryos from females treated on gestation days 12 through 15 were removed, fixed, and sectioned at 24-hour intervals starting on gestation days 13. Necrosis and cellular degeneration were observed with decreasing severity in the telencephalon, diencephalon, mesencephalon, and medulla. The neocortex of 20-day treated fetuses was characterized by a thickening of the ventricular zone and reduced cellularity of the cortical plate.  相似文献   

3.
X-irradiation of the rat brain (1000R, at two days of age), suppresses the normal age-related increase in the weight of the cerebellum and cerebral hemispheres and influences amino acid levels. The decrease in glutamic acid concentration, particularly in the cerebellum, supports the previously advanced proposition that this amino acid may be associated with, or may be the transmitter of, the rat cerebellar granule cells. Subfractionation of the cerebellar tissue reveals that the decrease in the glutamic acid level consequent to the loss of granule cells, is reflected in the cytoplasmic fraction but not in the synaptic vesicle subfraction, where glutamic acid was increased. The reduced weight gain in the cerebral hemispheres after irradiation, is accompanied by a significant decrease of aspartate in the cytoplasmic fraction, changes which suggest that a specific cell type, with aspartic acid as its neurotransmitter (possibly in the hippocampus), may also be radiosensitive in the early postnatal period. In contrast, in the synaptic vesicle fraction from cerebral hemispheres, all free amino acids, with the exception of glutamine, increased significantly. Overall, the changes in free amino acid concentration induced by X-irradiation in the cytoplasmic fraction in both brain regions studied are opposite to those found in the synaptic vesicle fraction and although they may indicate changes in specific cell populations, as proposed above, they could also reflect changes in cellular compartmentalization and metabolism or changes in the relative axonal arborization of the affected regions.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

4.
We have investigated the effects of altered gravity on the kinetic parameters of glutamate transport activity. We observed no differences in Km values for cerebellum and cerebral hemisphere nerve terminals (synaptosomes) between control rats- 18,2 +/- 7,6 micromoles (cerebellum), 10,7 +/- 2,5 micromoles (cerebral hemispheres) and animals exposed to hypergravity- 23,3 +/- 6,9 micromoles (cerebellum), 6,7 +/- 1,5 micromoles (cerebral hemispheres). The similarity of this parameter for the two studied groups of animals showed that affinity of glutamate transporter to substrate in cerebellum and cerebral hemispheres was not sensitive to hypergravity stress. The maximal velocity of L-[14C]-glutamate uptake (Vmax) reduced for cerebellum synaptosomes from 9,6 +/- 3,9 nmol/min/mg of protein in control group to 7,4 +/- 2,0 nmol/min/mg of protein in animals, exposed to hypergravity stress. For cerebral hemisphere synaptosomes the maximal velocity significantly decreased from 12,5 +/- 3,2 nmol/min/mg of protein to 5,6 +/- 0,9 nmol/min/mg of protein, respectively.  相似文献   

5.
C57/B1 mice were exposed during pregnancy (gestation days 0–19) to a 20 kHz magnetic field (MF). The asymmetric sawtooth-wave form magnetic field in the exposed racks had a flux density of 15 μT (peak to peak). After 19 days, the exposure was terminated, and the mice were housed individually under normal laboratory conditions. On postnatal day (PD) 1, PD21, and PD308, various neurochemical markers in the brains of the offspring were investigated and the brains weighed. No significant difference was found in the whole brain weight at PD1 or PD21 between exposed offspring and control animals. However, on PD308, a significant decrease in weight of the whole brain was detected in exposed animals. No significant differences were found in the weight of cortex, hippocampus, septum, or cerebellum on any of the sampling occasions, nor were any significant differences detected in protein-, DNA-level, nerve growth factor (NGF), acetylcholine esterase- (AChE), or 2′,3′-cyclic nucle-otide 3′-phosphodiesterase- (CNP; marker for oligodendrocytes) activities on PD21 in cerebellum. Cortex showed a more complex pattern of response to MF: MF treatment resulted in a decrease in DNA level and increases in the activities of CNP, AChE, and NGF protein. On PD308, the amount of DNA was significantly reduced in MF-treated cerebellum and CNP activity was still enhanced in MF-treated cortex compared to controls. Most of the effects of MF treatment during the embryonic period were similar to those induced by ionizing radiation but much weaker. However, the duration of the exposure required to elucidate the response of different markers to MF seems to be greater and effects appear later during development compared to responses to ionizing radiation. © 1995 Wiley-Liss, Inc.  相似文献   

6.
In one experiment, Sprague Dawley rats (16–21 days of gestation) and their offspring were exposed to 100-MHz (CW) electromagnetic radiation at 46 mW/cm2 (SAR 2.77 mW/g) for 4 h/day for 97 days. In another experiment, the pregnant rats were irradiated daily from 17 to 21 days of gestation with 2450-MHz (CW) microwaves at 10 mW/cm2 (SAR 2 mW/g) for 21 h/day. In a third experiment, 6-day-old rat pups were irradiated 7 h/day for five days with 2450-MHz radiation at 10 mW/cm2. Equal numbers of animals were sham irradiated in each group. Quantitative studies of Purkinje cells showed a significant and irreversible decrease in rats irradiated during fetal or fetal and early postnatal life. In animals exposed postnatally, and euthanized immediately after irradiation, significant decrease in the relative number of Purkinje cells was apparent. However, restoration apparently occurred after forty days of recovery.  相似文献   

7.
Following syngeneic or autotransplantation of hemopoietic tissue to a heterotopic location, bone formation has been observed to occur in the implanted tissue. the characteristics of the cell residing in hemopoietic tissue with bone forming potential (preosteoblast) are unknown. to define some properties of this cell, its response to X-irradiation and cyclophosphamide (CTX) was compared to the response of the hemopoietic stem cell. Adult, male rats were exposed to 900 R whole body X-irradiation or 220 mg/kg of intraperitoneal CTX. With either treatment the dose was sufficient to kill the animals by bone marrow failure. At intervals following the X-irradiation or CTX, hemopoietic tissue was examined for the presence of viable hemopoietic stem cells and preosteoblasts. Following X-irradiation, viable hemopoietic stem cells and preosteoblasts could not be detected. Following CTX these cells could be detected. It is suggested that in the rat CTX at 220 mg/kg, although causing death by bone marrow failure, does not reduce the population of the preosteoblast or hemopoietic stem cell as effectively as 900 R X-irradiation.  相似文献   

8.
Protein synthesis in vivo was studied in whole brain of rat fetuses using continuous intravenous infusion of L-[U-14C]tyrosine into unrestrained pregnant rats at 19 and 21 days gestation. Protein degradation (KD) was calculated by subtracting fractional growth rate of brain protein (KG) from the fractional synthesis rate (KS). KS was high at both gestational ages (0.42 +/- 0.03 days-1 at day 19, 0.47 +/- 0.029 days-1 at 21 days), comparable to values previously reported for newborn rat cerebral hemispheres, and threefold higher than is seen in adult animals. KD was similar at both 19 and 21 days gestation (0.19-0.24) and lower than that reported in neonatal rat brain using similar techniques. Protein accretion during the most rapid phase of brain growth (fetus) is accomplished by similar rates of protein synthesis, but decreased rates of degradation when compared with a slower growth phase (newborn). KD in the brain of the rapidly growing fetus is slightly higher than in adult cerebral hemispheres.  相似文献   

9.
Neonates with premature rupture of the membrane and oligohydramnios have an increased risk of acute respiratory morbidity. The aims of this study are to investigate the effects of experimental oligohydramnios on transforming growth factor (TGF)-beta1 and connective tissue growth factor (CTGF) expressions and collagen level in fetal rat lungs. On day 16 of gestation, we anesthetized timed pregnant Sprague-Dawley dams, punctured the uterine wall and fetal membranes of each amniotic sac which resulted in oligohydramnios. Fetuses in the opposite uterine horn served as controls. On days 19 and 21 of gestation, fetuses were delivered by cesarean section. Rats exposed to oligohydramnios exhibited significantly lower lung weight/body weight ratios on days 19 and 21 of gestation than did the control rats. Lung type I collagen and TGF-beta1 mRNA expressions and lung collagen levels were significantly decreased in rats exposed to oligohydramnios on days 19 and 21 of gestation. Type I collagen and inhibitors of metalloproteinase-1 (TIMP-1) proteins were decreased and matrix metalloproteinase-1 (MMP-1) was increased in oligohydramnios-exposed rats on days 19 and 21 of gestation. CTGF mRNA expressions were comparable between control and oligohydramnios-exposed rats on days 19 and 21 of gestation. These data suggest that downregulation of collagen might be involved in the pathogenesis of oligohydramnios-induced respiratory morbidity.  相似文献   

10.
The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.  相似文献   

11.
In the present world, X-rays have been regarded as one of the most efficient tools in medicine, industry and research. On the contrary, extensive human exposure to these rays is responsible for causing detrimental effects on physiological system. The aim of the present study was to investigate the role of zinc (Zn), if any, in mitigating the adverse effects induced by fractionated X-irradiation on rat brain. Female Sprague-Dawley rats weighing 170–200 g were divided into four different groups viz.: (a) normal control, (b) X-irradiated (21Gy), (c) zinc treated (227 mg/L in drinking water) and (d) X-irradiated + zinc treated. The skulls of animals belonging to groups (b) and (d) were exposed to X-rays in 30 fractions. Each fraction delivered a radiation dose of 70 rads, and rats were exposed to two fractions every day for 15 days, consecutively. X-ray treatment resulted in significant alterations in the neurobehavior, neurotransmitter levels and neuro-histoarchitecture of rats, whereas zinc co-treatment with X-rays resulted in significant improvement in these parameters. X-ray exposure also caused a significant increase in the levels of lipid peroxidation as well as activities of catalase and superoxide dismutase, which however were decreased upon simultaneous Zn treatment. On the contrary, X-ray treatment down-regulated the glutathione system, which were found to be up-regulated by zinc co-treatment. Further, protein expressions of p53 and NF-?B were found to be significantly elevated after X-irradiation, which were reversed following Zn supplementation. Hence, Zn seems to be an effective agent in mitigating the detrimental effects caused by exposure to X-rays.  相似文献   

12.
Pregnant SPF Wistar rats and ICR/Swiss albino mice were injected in the tail vein with 85SrCl2 with 0.05 mM inactive carrier (SrCl2) given in volumes of 0.1 ml. The activity in the injected volume was about 14 MBq per kg of rat and 13 MBq per kg of mouse. The animals were injected at 2 or 13 days of gestation. The activity retained by the fetuses was quantitatively determined at three stages of the fetal intrauterine development: in rats at 14, 16 and 21 days of gestation, in mice at 14, 16 and 20 days of gestation. The activity of fetuses and/or placentas with fetal membranes was measured using a TESLA automatic gamma counter. Results indicate that fetuses of mice retained a significantly (P less than 0.01) greater percent of strontium activity than fetuses of rats. The highest specific activities (the percentage of total activity retained per gram of fetal tissue) were found in the late pregnancy period (at 21 days of gestation in rats and 20 days of gestation in mice) in animals that were injected with the radionuclide at 13 days of gestation.  相似文献   

13.
The central nervous system is one of the primary target organs for hydrogen sulphide (H2S) toxicity; however, there are limited data on the neurotoxic effects of low-dose chronic exposure on the developing nervous system. Levels of serotonin and norepinephrine in the developing rat cerebellum and frontal cortex were determined following chronic exposure to 20 and 75 ppm H2S during perinatal development. Both monoamines were altered in rats exposed to 75 ppm H2S compared with controls; serotonin levels were significantly increased at days 14 and 21 postnatal in both brain regions, and norepinephrine levels were significantly increased at days 7, 14, and 21 postnatal in cerebellum and at day 21 in the frontal cortex. Exposure to 20 ppm H2S significantly increased the levels of serotonin in the frontal cortex at day 21, whereas levels of norepinephrine were significantly reduced in the frontal cortex at days 14 and 21, and at day 14 in the cerebellum.  相似文献   

14.
Zusammenfassung Der Kopf von insgesamt 35 männlichen und weiblichen Meerschweinchen wurde mit Röntgenstrahlen (200 kV) homogen einzeitig bestrahlt. Die Dosen betrugen 500, 1000, 2000 und 3000 R bei einer Dosisleistung von 100 R/min. Nach allen Dosen wird in den neurosekretorischen Kernen des Hypothalamus und im Hypophysenhinterlappen der Bestand an Neurosekret vermindert. Drei Tage nach den Bestrahlungen mit 500 R nimmt das Neurosekret wieder zu und die Menge normalisiert sich bis zum 10. Tag p. irrad. Nach 1000 bis 3000 R sterben die Tiere nach 1 Woche, ohne daß es zur Restitution der Neurosekretbildung kommt.
The reaction of the neurosecretory hypothalamo-hypophyseal complex in the guinea pig following X-irradiation
Summary The effect of 200 kV X-irradiation on the hypothalamus and hypophysis of 35 (both male and female) guinea pigs was examined 24, 72, 120, and 240 hours after irradiation of the head. Doses of 500, 1,000, 2,000 and 3,000 R were used at 100 R per minute. 24 hours following irradiation at all doses, a decrease of neurosecretory material occurred in the nucleus supraopticus, nucleus paraventricularis, and in the neurohypophysis. 72 hours following irradiation with 500 R, the amount of neurosecretory material increased and normal levels are attained at 10 days. Higher dosages (1,000 to 3,000 R) prevented the increase observed with 500 R at 72 hours; rather, the animals died after 1 week.
  相似文献   

15.
The antibody response of mice to bovine γ-globulin(BGG) was suppressed either specifically by an intravenous injection of deaggregated soluble BGG (sBGG) or nonspecifically by X-irradiation. Immunization with the subcutaneous injection of BGG in Freund's incomplete adjuvant was given to mice either various days after sBGG injection or immediately after X-irradiation. Antigen-elimination (AE) test and passive hemagglutination(PHA) test were employed for estimating the immune status. The AE test indicated that the induction of tolerance was accomplished in the first 2 days after sBGG injection and that the tolerant state was stable at least for about 30 days thereafter. The degree of suppression by 1000 μg of sBGG corresponded to that obtained by X-irradiation at the dose of 400 R or more, and 100 μg of sBGG was equivalent to 300 R X-irradiation. The PHA test indicated, however, that such a correspondence as mentioned above between the dose of tolerogen and that of X-irradiation was not so stable as was seen by the AE test. Thus, the PHA titers of tolerized animals tended to recover up to the level of untolerized animals during the period of time from 10 days to 20 days after the tolerogen injection. Such discrepancies between the features in the AE test and those in the PHA test seemed attributable to a low avidity antibody formation in the tolerized animals, as judged by the hemagglutination-dissociation test. Hemagglutination by means of the sera from tolerized animals was seen to be reversed by the addition of free antigen more easily than the hemagglutination achieved by the sera of control animals or X-irradiated animals. The relationship between PHA titers and AE capacities of antibodies was investigated by the passive immunization of normal mice previously given the antigen. The result showed that the PHA titer did not always correlate with the AE capacity.  相似文献   

16.
Prolactin binding in the developing rat fetal liver   总被引:1,自引:0,他引:1  
The binding of prolactin by fetal rat liver cell membrane fractions from 17 to 21 days gestation was studied. Particulate liver membranes were prepared in Dulbecco's Phosphate Buffered Saline (PBS) by ultracentrifugation and incubated at 22 degrees C for 16 hours with [125I] iodo-human growth hormone (hGH). Non-specific binding was assessed by parallel incubations in the presence of a 2000-fold excess ovine prolactin. Specific prolactin binding sites were detected only at 21 days gestation (2932 +/- 401 cpm/mg protein) in freshly prepared membranes. On freezing at -20 degrees C for 24 to 48 hours, the membranes of 20 days gestation animals were able to specifically bind prolactin (1295 +/- 239 cpm/mg protein). Freezing led to a 45 +/- 7% increase (4270 +/- 701 cpm/mg protein) in prolactin binding at 21 days gestation. No hormonal binding was detected from 17 through 19 days gestation in either fresh or freeze-thawed membranes. Scatchard analysis revealed a high affinity binding site with a Ka of approximately 1.4 X 10(8)M-1 in both fresh and freeze-thawed membrane preparations. The data show that 1) prolactin receptors appear in liver only during late fetal life and that 2) freezing of membranes may unmask binding sites that are initially unavailable to specifically bind prolactin.  相似文献   

17.
Autoradiographic studies were conducted at the cerebral hemispheres of mouse embryos X-irradiated on day 12 of gestation and of normal litter mates during the subsequent developmental period. By counting the percentage of labeled mitoses the generation time, the potential doubling time, the growth fraction, as well as the length of the individual cell cycle stages of the neuroblast cells were determined. A continuous increase of generation time was found in the normal brains, concomitant with a latero-medial gradient in telencephalic wall differentiation progress. After X-irradiation this normal differentiation pattern still prevails, but with some marked topographical peculiarrities. The most important finding was a significant lengthening of the generation time at the medially situated rudiments of the ventricular zone and, similarly at the heterotopic cell islets located within the intermediary zone. Concomitant with this effect, which was seen mainly on days 15 and 17 of gestation, there was a marked increase of mitotic time of these special neuroblasts. The latter finding was regarded as a random event only, which has no causal relationship to the pathogenesis of the heterotopic islets or similar overgrowth anomalies after X-irradiation. In spite of the long generation time of these histological peculiarities, they make a considerable contribution to the regeneration of the injured telencephalic wall: Up to day 15 of gestation the heterotopias had a growth fraction of nearly 1.0 (= 100%), whereas the percentage of proliferating cells within the orthotopic remainders of the ventricular zone was only 44%.  相似文献   

18.
The effects of corticosterone on the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) were studied in the chick embryonic brain. Chick embryos received either 0.25, 0.5, or 1.0 g of corticosterone via the air sac daily for three days during either embryonic days 6 through 8 (E6-E8), of cerebral neurogenesis, or days 10 through 12 (E10-E12), a period of cerebellar neurogenesis. Enzyme activities were determined in cerebral hemispheres, optic lobes, cerebellum and remaining brain at 10, 15, and 20 days of incubation. In embryos treated from E6 to E8, ChAT activity was generally higher at day 10 in cerebral hemispheres and optic lobes (cerebellum was not determined) while AChE activity was not affected. At day 20 ChAT activity of treated chick embryos was lower in the cerebral hemispheres and optic lobes, but not in the cerebellum; AChE activity was higher in the cerebral hemispheres, lower in the optic lobes, and not changed in the cerebellum as compared to controls. However, in embryos treated from E10 to E12 both cerebellar ChAT and AChE activities were higher at day 15 in comparison to controls. These data show that the hormonal effects were most prominent only in the brain areas undergoing neurogenesis during the period of hormonal treatment. Since AChE activity is also present in nonneuronal cells, the observed alterations caused by corticosterone may reflect glial cell responses to the hormone. Whether the hormone affects the final number and/or maturation of cholinergic neurons and/or glial cells remain to be investigated.  相似文献   

19.
The development of superficial infraslow potential oscillations (ISPO) of brain hemispheres, cerebellum and optic lobes was studied in chick embryos between day 9 and 21 of incubation. The ISPO were firstly registered in brain hemispheres at day 10 of incubation, i.e. 5 days before the onset of spontaneous EEG activity. The ISPO in 10-day-old embryos had an average frequency of 9.9 c/min and an amplitude of 0.14 mV. During further development till hatching the frequency decreased to 7.5 c/min and the amplitude increased to 1.39 mV. Similar ISPO with the same developmental trend were also registered from the surface of the cerebellum and optic lobes. Superficial ISPO were not synchronized either between both hemispheres or between different fields of the same hemisphere.  相似文献   

20.
The volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) of the rat brain is severalfold larger in males than in females. The volume of the SDN-POA can be influenced significantly by the hormonal milieu during the perinatal "critical period" of sexual differentiation of the brain. The purpose of the present study was to determine the onset of this period of sexual differentiation of the SDN-POA. Pregnant rats received no treatment or were injected subcutaneously with oil on day 17, 18, or 20, or testosterone (T;5 mg) on days 16-22 of gestation. On postnatal day 15, unilateral SDN-POA volumes from female offspring prenatally exposed to testosterone on day 16 or 17 were not different from values of control (untreated or oil-injected) offspring. Female offspring from mothers treated with testosterone on day 18, 19, or 20 of gestation showed a significant and similar increase in SDN-POA volume over values from control animals. SDN-POA volumes from female offspring exposed to testosterone on day 21 or 22, although larger than those of controls, were not different statistically. We conclude that with the specific paradigm used in this study SDN-POA development is insensitive prior to day 18 of gestation, the day on which the onset of the hormone-sensitive period occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号