首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chang AS  Noor MA 《Genetics》2007,176(1):343-349
F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.  相似文献   

2.
Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities.  相似文献   

3.
Chromosomal inversions impact genetic variation and facilitate speciation in part by reducing recombination in heterokaryotypes. We generated multiple whole-genome shotgun sequences of the parapatric species pair Drosophila pseudoobscura and Drosophila persimilis and their sympatric outgroup (Drosophila miranda) and compared the average pairwise differences for neutral sites within, just outside and far outside of the three large inversions. Divergence between D. pseudoobscura and D. persimilis is high inside the inversions and in the suppressed recombination regions extending 2.5 Mb outside of inversions, but significantly lower in collinear regions further from the inversions. We observe little evidence of decreased divergence predicted to exist in the centre of inversions, suggesting that gene flow through double crossovers or gene conversion is limited within the inversion, or selection is acting within the inversion to maintain divergence in the face of gene flow. In combination with past studies, we provide evidence that inversions in this system maintain areas of high divergence in the face of hybridization, and have done so for a substantial period of time. The left arm of the X chromosome and chromosome 2 inversions appear to have arisen in the lineage leading to D. persimilis approximately 2 Ma, near the time of the split of D. persimilis-D. pseudoobscura-D. miranda, but likely fixed within D. persimilis much more recently, as diversity within D. persimilis is substantially reduced inside and near these two inversions. We also hypothesize that the inversions in D. persimilis may provide an empirical example of the 'mixed geographical mode' theory of inversion origin and fixation, whereby allopatry and secondary contact both play a role.  相似文献   

4.
Machado CA  Haselkorn TS  Noor MA 《Genetics》2007,175(3):1289-1306
There is increasing evidence that chromosomal inversions may facilitate the formation or persistence of new species by allowing genetic factors conferring species-specific adaptations or reproductive isolation to be inherited together and by reducing or eliminating introgression. However, the genomic domain of influence of the inverted regions on introgression has not been carefully studied. Here, we present a detailed study on the consequences that distance from inversion breakpoints has had on the inferred level of gene flow and divergence between Drosophila pseudoobscura and D. persimilis. We identified the locations of the inversion breakpoints distinguishing D. pseudoobscura and D. persimilis in chromosomes 2, XR, and XL. Population genetic data were collected at specific distances from the inversion breakpoints of the second chromosome and at two loci inside the XR and XL inverted regions. For loci outside the inverted regions, we found that distance from the nearest inversion breakpoint had a significant effect on several measures of divergence and gene flow between D. pseudoobscura and D. persimilis. The data fitted a logarithmic relationship, showing that the suppression of crossovers in inversion heterozygotes also extends to loci located outside the inversion but close to it (within 1-2 Mb). Further, we detected a significant reduction in nucleotide variation inside the inverted second chromosome region of D. persimilis and near one breakpoint, consistent with a scenario in which this inversion arose and was fixed in this species by natural selection.  相似文献   

5.
Hybrid male sterility, hybrid inviability, sexual isolation, and a hybrid male courtship dysfunction reproductively isolate Drosophila pseudoobscura and D. persimilis. Previous studies of the genetic bases of these isolating mechanisms have yielded only limited information about how much and what areas of the genome are susceptible to interspecies introgression. We have examined the genetic basis of these barriers to gene exchange in several thousand backcross hybrid male progeny of these species using 14 codominant molecular genetic markers spanning the five chromosomes of these species, focusing particularly on the autosomes. Hybrid male sterility, hybrid inviability, and the hybrid male courtship dysfunction were all associated with X-autosome interactions involving primarily the inverted regions on the left arm of the X-chromosome and the center of the second chromosome. Sexual isolation from D. pseudoobscura females was primarily associated with the left arm of the X-chromosome, although both the right arm and the center of the second chromosome also contributed to it. Sexual isolation from D. persimilis females was primarily associated with the second chromosome. The absence of isolating mechanisms being associated with many autosomal regions, including some large inverted regions that separate the strains, suggests that these phenotypes may not be caused by genes spread throughout the genome. We suggest that gene flow between these species via hybrid males may be possible at loci spread across much of the autosomes.  相似文献   

6.
The divergence of Drosophila pseudoobscura from its close relatives, D. persimilis and D. pseudoobscura bogotana, was examined using the pattern of DNA sequence variation in a common set of 50 inbred lines at 11 loci from diverse locations in the genome. Drosophila pseudoobscura and D. persimilis show a marked excess of low-frequency variation across loci, consistent with a model of recent population expansion in both species. The different loci vary considerably, both in polymorphism levels and in the levels of polymorphisms that are shared by different species pairs. A major question we address is whether these patterns of shared variation are best explained by gene flow or by persistence since common ancestry. A new test of gene flow, based on patterns of linkage disequilibrium, is developed. The results from these, and other tests, support a model in which D. pseudoobscura and D. persimilis have exchanged genes at some loci. However, the pattern of variation suggests that most gene flow, although occurring after speciation began, was not recent. There is less evidence of gene flow between D. pseudoobscura and D. p. bogotana. The results are compared with recent work on the genomic locations of genes that contribute to reproductive isolation between D. pseudoobscura and D. persimilis. We show that there is a good correspondence between the genomic regions associated with reproductive isolation and the regions that show little or no evidence of gene flow.  相似文献   

7.
Noor MA  Garfield DA  Schaeffer SW  Machado CA 《Genetics》2007,177(3):1417-1428
As whole-genome sequence assemblies accumulate, a challenge is to determine how these can be used to address fundamental evolutionary questions, such as inferring the process of speciation. Here, we use the sequence assemblies of Drosophila pseudoobscura and D. persimilis to test hypotheses regarding divergence with gene flow. We observe low differentiation between the two genome sequences in pericentromeric and peritelomeric regions. We interpret this result as primarily a remnant of the correlation between levels of variation and local recombination rate observed within populations. However, we also observe lower differentiation far from the fixed chromosomal inversions distinguishing these species and greater differentiation within and near these inversions. This finding is consistent with models suggesting that chromosomal inversions facilitate species divergence despite interspecies gene flow. We also document heterogeneity among the inverted regions in their degree of differentiation, suggesting temporal differences in the origin of each inverted region consistent with the inversions arising during a process of divergence with gene flow. While this study provides insights into the speciation process using two single-genome sequences, it was informed by lower throughput but more rigorous examinations of polymorphism and divergence. This reliance highlights the need for complementary genomic and population genetic approaches for tackling fundamental evolutionary questions such as speciation.  相似文献   

8.
Different electrophoretic alleles of amylase show associations with particular chromosome 3 inversions in D. pseudoobscura and D. persimilis. Relative adult amylase activities were compared in 37, 37 and 10 strains of D. pseudoobscura, D. persimilis and D. miranda, respectively. Strains carrying the same electrophoretic allele were compared by crossing these lines individually to a reference strain carrying a different electrophoretic mobility allele. This procedure allows comparisons among species, inversions, electromorphs and strains for genetic variation in amylase activity. F2 analysis established that the activity variation co-segregates with the structural amylase locus. This type of variation could be due to either structural gene differences or differences in closely linked, cis-acting regulatory regions. Variation has been detected among and within electrophoretic mobility classes. Moreover, this variation is clearly nonrandom and reveals more of the genetic structure associated with the chromosomal inversion phylogeny of D. pseudoobscura and D. persimilis. ----Some of the findings are: (1) Similar electromorphs in D. pseudoobscura and D. persimilis usually show different activities. These species show nearly complete differentiation of amylase alleles, based on activities. (2) D. persimilis has the broadest range of variation in amylase activity, about four-fold between the highest and lowest alleles. D. pseudoobscura and D. miranda are also polymorphic for activity, but have more constrained ranges of variation. D. miranda alleles show on the average about four times the activity of D. pseudoobscura alleles. (3) Some association of electrophoretic mobility and activity has been found. Alleles 1.09 of D. persimilis, as well as 1.43 and 1.55 of D. miranda, have relatively high activity. It may be that these high activity alleles are part of an adaptation to cooler habitats. (4) Within electrophoretic classes, associations of activities with inversions have been found. These are especially strong in D. persimilis. The 1.00 alleles in the ST, KL, MD and WT inversions, the 0.92 allele in the ST and MD inversions and the 1.09 allele in the WT and KL inversions have levels of activities that depend upon the arrangement in which they are located. These results demonstrate that suppression of recombination in inversion heterokaryotypes can result in extensive genic divergence between inversions.  相似文献   

9.
Many factors can promote speciation, and one which has received much attention is chromosomal inversions. A number of models propose that the recombination suppressing effects of inversions facilitate the maintenance of differences between interbreeding populations in genes affecting adaptive divergence and reproductive isolation. These models predict that such genes will disproportionately reside within inversions, rather than in collinear regions. This hypothesis has received some support, but exceptions exist. Additionally, the effects of known low levels of recombination within inversions on these models are uninvestigated. Here, simulations are used to compare the maintenance of genetic differences between populations following secondary contact and hybridization in different inversion models. We compare regions with no recombination within them to regions with low recombination and to collinear regions with free recombination. Our most general finding is that the low levels of recombination within an inversion often result in the loss of accentuated divergence in inverted regions compared to collinear ones. We conclude that inversions can facilitate the maintenance of species differences under some conditions, but that large or qualitative differences between inverted and collinear regions need not occur. We also find that strong selection facilitates maintenance of divergence in a manner analogous to inversions.  相似文献   

10.
In nature, closely related species may hybridize while still retaining their distinctive identities. Chromosomal regions that experience reduced recombination in hybrids, such as within inversions, have been hypothesized to contribute to the maintenance of species integrity. Here, we examine genomic sequences from closely related fruit fly taxa of the Drosophila pseudoobscura subgroup to reconstruct their evolutionary histories and past patterns of genic exchange. Partial genomic assemblies were generated from two subspecies of Drosophila pseudoobscura (D. ps.) and an outgroup species, D. miranda. These new assemblies were compared to available assemblies of D. ps. pseudoobscura and D. persimilis, two species with overlapping ranges in western North America. Within inverted regions, nucleotide divergence among each pair of the three species is comparable, whereas divergence between D. ps. pseudoobscura and D. persimilis in non-inverted regions is much lower and closer to levels of intraspecific variation. Using molecular markers flanking each of the major chromosomal inversions, we identify strong crossover suppression in F1 hybrids extending over 2 megabase pairs (Mbp) beyond the inversion breakpoints. These regions of crossover suppression also exhibit the high nucleotide divergence associated with inverted regions. Finally, by comparison to a geographically isolated subspecies, D. ps. bogotana, our results suggest that autosomal gene exchange between the North American species, D. ps. pseudoobscura and D. persimilis, occurred since the split of the subspecies, likely within the last 200,000 years. We conclude that chromosomal rearrangements have been vital to the ongoing persistence of these species despite recent hybridization. Our study serves as a proof-of-principle on how whole genome sequencing can be applied to formulate and test hypotheses about species formation in lesser-known non-model systems.  相似文献   

11.
Noor MA 《Genetical research》2005,85(2):119-125
Divergence between species in regulatory pathways may contribute to hybrid incompatibilities such as sterility. Consistent with this idea, genes involved in male fertility often evolve faster than most other genes both in amino acid sequence and in expression. Previously, we identified a panel of male-specific genes under-expressed in sterile male hybrids of Drosophila simulans and D. mauritiana relative to pure species, and we showed that this under-expression is associated with infertility. In a preliminary effort to assess the generalities in the patterns of evolution of these genes, I examined patterns of mRNA expression in three of these genes in sterile F 1 hybrid males of D. pseudoobscura and D. persimilis . F 1 hybrid males bearing D. persimilis X chromosomes under-expressed all these genes relative to the parental species, while hybrids bearing D. pseudoobscura X chromosomes under-expressed two of these three genes. Interestingly, the third gene, CG5762 , has undergone extensive amino acid evolution within the D. pseudoobscura species group, possibly driven by positive natural selection. We conclude that some of the same genes exhibit disruptions in expression within each of the two species groups, which could suggest commonalities in the regulatory architecture of sterility in these groups. Alternative explanations are also considered.  相似文献   

12.
C. Segarra  M. Aguade 《Genetics》1992,130(3):513-521
Nine single copy regions located on the X chromosome have been mapped by in situ hybridization in six species of the obscura group of Drosophila. Three Palearctic species, D. subobscura, D. madeirensis and D. guanche, and three Nearctic species, D. pseudoobscura, D. persimilis and D. miranda, have been studied. Eight of the regions include known genes from D. melanogaster (Pgd, zeste, white, cut, vermilion, RNA polymerase II 215, forked and suppressor of forked) and the ninth region (lambda DsubF6) has not yet been characterized. In all six species, as in D. melanogaster, all probes hybridize to a single site. Established chromosomal arm homologies of Muller's element A are only partly supported by present results since two of the probes (Pgd and zeste) hybridize at the proximal end of the XR chromosomal arm in the three Nearctic species. In addition to the centric fusion of Muller's A (= XL) and D (= XR) elements, the metacentric X chromosome of the Nearctic species requires a pericentric inversion to account for this result. Previously proposed homologies of particular chromosomal regions of the A (= X) chromosome in the three species of the D. subobscura cluster and of the XL chromosomal arm in the three species of the D. pseudoobscura cluster are discussed in light of the present results. Location of the studied markers has changed drastically not only since the divergence between the melanogaster and obscura groups but also since the Palearctic and Nearctic species of the obscura group diverged.  相似文献   

13.
Genetic studies of sexual isolation in Drosophila have generally failed to fully evaluate the effects of their sample size and recombination between markers on their conclusions. In this study we evaluate recombinational distances between markers in Drosophila pseudoobscura and D. persimilis, a species pair in which numerous genetic mapping studies have been performed. We conclude that, contrary to assertions, the inversions that distinguish these two species still allow for much recombination within most of their chromosome arms in F1 hybrid females. Such recombination may have caused previous mapping studies in these species to miss (or grossly underestimate) the effects of several genomic regions. We also evaluate the effects of sample size and recombination on genetic studies of sexual isolation in other Drosophila species groups. We conclude that some of these studies may have been heavily biased toward detecting only genes of large effect. Future studies of sexual isolation should be preceded by detailed statistical power analyses that determine the effects of recombination and sample size in the species pair being studied to avoid these complications.  相似文献   

14.
Chromosomal rearrangements may directly cause hybrid sterility and can facilitate speciation by preserving local adaptation in the face of gene flow. We used comparative linkage mapping with shared gene‐based markers to identify potential chromosomal rearrangements between the sister monkeyflowers Mimulus lewisii and Mimulus cardinalis, which are textbook examples of ecological speciation. We then remapped quantitative trait loci (QTLs) for floral traits and flowering time (premating isolation) and hybrid sterility (postzygotic isolation). We identified three major regions of recombination suppression in the M. lewisii × M. cardinalis hybrid map compared to a relatively collinear Mimulus parishii × M. lewisii map, consistent with a reciprocal translocation and two inversions specific to M. cardinalis. These inferences were supported by targeted intraspecific mapping, which also implied a M. lewisii‐specific reciprocal translocation causing chromosomal pseudo‐linkage in both hybrid mapping populations. Floral QTLs mapped in this study, along with previously mapped adaptive QTLs, were clustered in putatively rearranged regions. All QTLs for male sterility, including two underdominant loci, mapped to regions of recombination suppression. We argue that chromosomal rearrangements may have played an important role in generating and consolidating barriers to gene flow as natural selection drove the dramatic ecological and morphological divergence of these species.  相似文献   

15.
16.
Abstract Most work on adaptive speciation to date has focused on the role of low hybrid fitness as the force driving reinforcement (the evolution of premating isolation after secondary contact that reduces the likelihood of matings between populations). However, recent theoretical work has shown that postmating, prezygotic incompatibilities may also be important in driving premating isolation. We quantified premating, postmating-prezygotic, and early postzygotic fitness effects in crosses among three populations: Drosophila persimilis, D. pseudoobscura USA (sympatric to D. persimilis ), and D. pseudoobscura Bogotá (allopatric to D. persimilis ). Interspecific matings were more likely to fail when they involved the sympatric populations than when they involved the allopatric populations, consistent with reinforcement. We also found that failure rate in sympatric mating trials depended on whether D. persimilis females were paired with D. pseudoobscura males or the reverse. This asymmetry most likely indicates differences in discrimination against heterospecific males by females. By measuring egg laying rate, fertilization success and hatching success, we also compared components of postmating-prezygotic and early postzygotic isolation. Postmating-prezygotic fitness costs were small and not distinguishable between hetero- and conspecific crosses. Early postzygotic fitness effects due to hatching success differences were also small in between-population crosses. There was, however, a postzygotic fitness effect that may have resulted from an X-linked allele found in one of the two strains of D. pseudoobscura USA. We conclude that the postmating-prezygotic fitness costs we measured probably did not drive premating isolation in these species. Premating isolation is most likely driven in sympatric populations by previously known hybrid male sterility.  相似文献   

17.
R. L. Wang  J. Hey 《Genetics》1996,144(3):1113-1126
Thirty-five period locus sequences from Drosophila pseudoobscura and its siblings species, D. p. bogotana, D. persimilis, and D. miranda, were studied. A large amount of variation was found within D. pseudoobscura and D. persimilis, consistent with histories of large effective population sizes. D. p. bogotana, however, has a severe reduction in diversity. Combined analysis of per with two other loci, in both D. p. bogotana and D. pseudoobscura, strongly suggest this reduction is due to recent directional selection at or near per within D. p. bogotana. Since D. p. bogotana is highly variable and shares variation with D. pseudoobscura at other loci, the low level of variation at per within D. p. bogotana can not be explained by a small effective population size or by speciation via founder event. Both D. pseudoobscura and D. persimilis have considerable intraspecific gene flow. A large portion of one D. persimilis sequence appears to have arisen via introgression from D. pseudoobscura. The time of this event appears to be well after the initial separation of these two species. The estimated times since speciation are one mya for D. pseudoobscura and D. persimilis and 2 mya since the formation of D. miranda.  相似文献   

18.
The locations of 77 markers along the chromosomal elements B (41 markers) and C (36 markers) of Drosophila subobscura, D. pseudoobscura, and D. melanogaster were obtained by in situ hybridization on polytene chromosomes. In comparisons between D. subobscura and D. pseudoobscura, 10 conserved segments (accounting for 32% of the chromosomal length) were detected on element B and eight (17% of the chromosomal length) on element C. The fixation rate of paracentric inversions inferred by a maximum likelihood approach differs significantly between elements. Muller's element C (0.17 breakpoints/Mb/million years) is evolving two times faster than element B (0.08 breakpoints/Mb/million years). This difference in the evolutionary rate is paralleled by differences in the extent of chromosomal polymorphism in the corresponding lineages. Element C is highly polymorphic in D. subobscura, D. pseudoobscura, and in other obscura group species such as D. obscura and D. athabasca. In contrast, the level of polymorphism in element B is much lower in these species. The fixation rates of paracentric inversions estimated in the present study between species of the Sophophora subgenus are the highest estimates so far reported in the genus for the autosomes. At the subgenus level, there is also a parallelism between the high fixation rate and the classical observation that the species of the Sophophora subgenus tend to be more polymorphic than the species of the Drosophila subgenus. Therefore, the detected relationship between level of polymorphism and evolutionary rate might be a general characteristic of chromosomal evolution in the genus Drosophila.  相似文献   

19.
The Sex-Ratio chromosome in Drosophila pseudoobscura is subject to meiotic drive. It is associated with a series of three nonoverlapping paracentric inversions on the right arm of the X chromosome. The esterase-5 gene region has been localized to section 23 within the subbasal inversion of the Sex-Ratio inversion complex, making esterase- 5 a convenient locus for molecular evolutionary analyses of the Sex- Ratio inversion complex and the associated drive system. A 504-bp fragment of noncoding, intergenic DNA from the esterase-5 gene region was amplified and sequenced from 14 Sex-Ratio and 14 Standard X chromosomes of D. pseudoobscura, and from 9 X chromosomes of its two sibling species, Drosophila persimilis and Drosophila miranda. There is extensive sequence differentiation between the Sex-Ratio and Standard chromosomal types. The common Standard chromosome is highly polymorphic, while, as expected from either the neutral mutation theory or the selective sweep hypothesis, the rarer Sex-Ratio chromosome has much less within-chromosome nucleotide polymorphism. We estimate that the Standard and Sex-Ratio chromosomes in D. pseudoobscura diverged between 700,000 and 1.3 Mya, or at least 2 million generations ago. The clustering of D. pseudoobscura Sex-Ratio chromosomes in a neighbor- joining phylogeny indicates a fairly old, monophyletic origin in this species. It appears from these data that Sex-Ratio genes were present prior to the divergence of D. pseudoobscura and D. persimilis and that both the Standard and Sex-Ratio chromosomes of D. persimilis were derived from the Standard chromosome of D. pseudoobscura after the inversion events that isolated the D. pseudoobscura Sex-Ratio chromosome.   相似文献   

20.
Chromosomal and Genic Barriers to Introgression in Helianthus   总被引:2,自引:0,他引:2       下载免费PDF全文
L. H. Rieseberg  C. R. Linder    G. J. Seiler 《Genetics》1995,141(3):1163-1171
The sexual transfer of genes between taxa possessing different structural karyotypes must involve the passage of genes through a chromosomal sterility barrier. Yet little is known about the effects of structural differences on gene introgression within or adjacent to the rearranged chromosomal fragments or about the patterns of introgression in collinear regions. Here, we employ 197 mapped molecular markers to study the effects of chromosomal structural differences on introgression in backcrossed progeny of the domesticated sunflower, Helianthus annuus, and its karyotypically divergent wild relative, H. petiolaris. Forty percent of the genome from the seven collinear linkages introgressed, whereas only 2.4% of the genome from the 10 rearranged linkages was transferred. Thus, chromosomal rearrangements appear to provide an effective mechanism for reducing or eliminating introgression in rearranged chromosomal segments. On the other hand, observations that 60% of the markers from within the collinear portion of the genome did not introgress suggests that genic factors also resist introgression in Helianthus. That is, selection against H. petiolaris genes in concert with linkage may have reduced or eliminated parts of the genome not protected by structural changes. Thus, barriers to introgression in Helianthus appear to include both chromosomal structural and genic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号