首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diphtheria toxin (DT) is a soluble protein that translocates across hydrophobic lipid bilayers in response to low pH. The translocation activity of DT has been localized to the 40-kDa toxin B chain and can be expressed independently of the C-terminal receptor binding site. Buried hydrophobic domains in DT are thought to participate in the membrane translocation process. We have identified a mutant form of DT, CRM 102, that has a point mutation at position 308 (Pro----Ser) within one of these hydrophobic domains. CRM 102 conjugated to a monoclonal antibody against the T cell receptor, the transferrin receptor, or transferrin itself is approximately 10-fold less toxic than native DT or a control DT mutant, CRM 103, linked to the same binding moieties. Direct measurement of membrane translocation activity by exposure of cells to low extracellular pH demonstrates that CRM 102 conjugates express only 10% of the translocation activity of the control toxin conjugates. However, when CRM 102 or 102 conjugates bind and kill cells via the DT receptor, no reduction in membrane translocation activity is observed. The defect in CRM 102 is not evident in the presence of 20 mM NH4Cl. The defect in translocation also has no effect on the ratio of the lag time before protein synthesis inhibition begins to the rate of protein synthesis inhibition. Thus, the proline-serine substitution at position 308 disrupts the membrane translocation process and distinguishes between two routes of DT entry: DT receptor-mediated entry and entry mediated by alternate receptors.  相似文献   

2.
The role of diphtheria toxin (DT) B-chain subdomains in DT cytotoxicity and immunotoxin mechanism of action has been investigated. OKT3 (mAb to the CD3 surface Ag of human T lymphocytes) was conjugated to DT or the DT mutant CRM 1001, which has a cys----tyr substitution at position 471 of the B chain. OKT3-CRM 1001 immunotoxin was about 1400-fold less cytotoxic for CD3 Jurkat cells than OKT3-DT and had a 12-fold slower kinetics of protein synthesis inactivation, CRM 1001 killed DT-sensitive Vero cells at a 5000-fold higher concentration than DT. Its cell surface-binding activity was comparable to DT. Based on kinetics of cell inactivation, toxicity determination at low extracellular pH and Triton X-114 distribution, it was concluded that CRM 1001 is defective in at least one crucial step of toxin penetration and is unable to cross cell membranes as efficiently as DT. The substituted cysteine appears to be important for DT translocating functions. Data on the function of DT B-chain subdomains are relevant for the study of whole toxin conjugates and their mechanism of action.  相似文献   

3.
Purification of diphtheria toxin receptor from Vero cells   总被引:2,自引:0,他引:2  
Diphtheria toxin receptor has been solubilized from Vero cell membranes with octyl beta-D-glucoside. CRM197, the product of a mutated diphtheria toxin gene, was used for the identification of the receptor. The binding activity of the solubilized receptor was assayed by precipitating the receptor with acetone in the presence of phospholipids and carrier proteins. The solubilized receptor was purified by the combination of several chromatographic steps in the presence of the detergent, resulting in about a 10(6)-fold purification of the receptor. The purified receptor showed essentially a single band of 14.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When partially purified receptor fractions were subjected to ligand blotting analysis using 125I-CRM197 as the probe, the 14.5-kDa protein and a few minor protein bands were identified as diphtheria toxin-binding molecules. These results show clearly that the 14.5-kDa protein is the diphtheria toxin receptor, or at least the major diphtheria toxin-binding molecule. When partially purified receptor was applied to a Sephacryl S-300 column in the presence of detergent, the receptor was eluted in the fractions corresponding to the 60-90-kDa size range. This suggests that the protein forms a complex with itself or with another protein.  相似文献   

4.
Monoclonal antibodies (Mab) were raised against CRM197, a non-toxic mutant of diphtheria toxin (DT). The ability of four Mabs to bind DT and the six functional mutants CRM197, CRM176, CRM228, CRM1001, CRM45 and CRM30 was assessed by immunoblotting and by a radioimmunoassay in which the protein antigen in solution competes with labeled CRM197 for the Mab binding site. The results show that the peptides recognized by Mab11.3, Mab53 and Mab23 are accessible in the mutant molecules in solution but not when they are part of the native DT structure, which could therefore be described for this purpose as 'closed' in contrast with an 'open' conformation of CRM197, CRM176 and CRM228. In particular, the behaviour of Mab53 indicates that the single amino acid substitutions in the A fragments of CRM197 and CRM176 also affect the conformation of their B fragments.  相似文献   

5.
CRM197, CRM176, and CRM228 are products of single or multiple missense mutations in the diphtheria toxin gene. CRM197 differs from wild-type toxin in 1 amino acid residue of the fragment A region, and also CRM176 and CRM228 have amino acid substitution(s) in fragment A. We compared the binding properties of CRM197 to toxin-sensitive Vero cells with those of diphtheria toxin and other CRMs. Nicked CRM197 is about 50 times more effective than intact CRM197 in inhibiting the action of diphtheria toxin on sensitive cells, as shown by inhibition of diphtheria toxin cytotoxicity or inhibition of binding of 125I-diphtheria toxin. The binding of native toxin or other CRMs was not significantly affected by nicking. Moreover, the binding of CRM197 to cells was unaffected by ATP, although ATP clearly inhibits binding of diphtheria toxin, CRM176, and CRM228. Two kinds of hybrid protein were formed using fragment B of CRM197: one with fragment A of diphtheria toxin and one with fragment A of CRM228. ATP inhibited the binding of these hybrid proteins. Furthermore, the affinities of these hybrid proteins for diphtheria toxin-sensitive cells were the same as that of native toxin. Thus, it was concluded that the altered binding properties of CRM197 were due to alteration of fragment A and what the interaction of diphtheria toxin with ATP involves both fragments. The results also suggest that fragment A plays a role in diphtheria toxin-receptor interaction.  相似文献   

6.
CRM197, a mutated diphtheria toxin (DT), has long been recognized to be a non-toxic protein. Based on its non-toxic feature, this protein has been utilized for various purposes, including as an inhibitor of heparin-binding EGF-like growth factor (HB-EGF) and as an immunological adjuvant for vaccination. Here we show evidence that CRM197 has a weak toxicity. This toxicity was observed in cells over-expressing the DT receptor/proHB-EGF, but not in parental cells, indicating that the toxicity was mediated through DT receptor. CRM197 did not show any toxicity toward DT-resistant cells, which have a mutation in elongation factor 2, and a cell-free assay revealed the existence of weak EF-2-ADP ribosylation activity in fragment A of CRM197. Thus, the present study indicates a requirement for specific care in the use of CRM197 at a high dosage, although the toxicity of CRM197 is about 10(6) times less than that of wild-type DT. We found that a monoclonal antibody to DT inhibited CRM197 toxicity, but did not affect the inhibitory activity of CRM197 toward HB-EGF-induced mitogenic activity. CRM197 strongly inhibits tumour growth in nude mice. The anti-DT monoclonal antibody administered with CRM197 reduced the anti- tumourigenic effect of CRM197, indicating that the toxicity of CRM197 potentiates its anti- tumourigenic effect.  相似文献   

7.
The role of the diphtheria toxin receptor in cytosol translocation   总被引:6,自引:0,他引:6  
The role of the receptor in the transport of diphtheria toxin (DT) to the cytosol was examined. A point-mutant form of DT, CRM 107 (CRM represents cross-reacting material), that has an 8,000-fold lower affinity for the DT receptor than native toxin was conjugated to transferrin and monoclonal antibodies specific for the cell-surface receptors T3 and Thy1. Conjugating the binding site-inactivated CRM 107 to new binding moieties reconstituted full toxicity, indistinguishable from native DT linked to the same ligand, indicating that the entry activity of the DT B chain can be fully separated from the receptor binding function. Like DT, the toxin conjugates exhibited a dose-dependent lag period before first-order inactivation of protein synthesis. Inactivation of the binding site of the toxin portion of the conjugate was found to have no effect on the kinetics of protein synthesis inactivation. The receptor used by the toxin determined the length of the lag period relative to the killing rate. Comparing the potency of CRM 107 conjugates with native DT, standardized for receptor occupancy, shows that new receptors can be as or more efficient than the DT receptor in transporting DT to the cytosol. The transferrin-CRM 107 conjugate, unlike native DT, was highly toxic to murine cells. All the data presented are consistent with a model that the DT receptor, other than initiating rapid internalization of the toxin to low pH compartments, is unnecessary for transport of the toxin to the cytosol and that membrane translocation activity is expressed by the DT B subunit independent of the receptor-binding site.  相似文献   

8.
A monoclonal antibody that blocks the binding of diphtheria toxin to Vero cells was isolated by immunizing mice with Vero cell membrane. The antibody inhibits the binding of diphtheria toxin and also CRM197, a mutant form of diphtheria toxin, to Vero cells, and consequently inhibits the cytotoxicity of diphtheria toxin. This antibody does not directly react with the receptor molecule of diphtheria toxin (DTR14.5). Immunoprecipitation and immunoblotting studies revealed that this antibody binds to a novel membrane protein of 27 kDa (DRAP27). When diphtheria toxin receptor was passed through an affinity column made with this antibody, the receptor was trapped only in the presence of DRAP27. These results indicate that DRAP27 and DTR14.5 closely associate in Vero cell membrane and that the inhibition of the binding of diphtheria toxin to the receptor is due to the binding of the antibody to the DRAP27 molecule. Binding studies using 125I-labeled antibody showed that there are many more molecules of DRAP27 on the cell surface than diphtheria toxin-binding sites. However, there is a correlation between the sensitivity of a cell line to diphtheria toxin and the number of DRAP27 molecules on the cell surface, suggesting that DRAP27 is involved in the entry of diphtheria toxin into the target cell.  相似文献   

9.
Monoclonal antibodies against fragment A of diphtheria toxin were isolated and characterized. Three antibodies with similar affinities for fragment A had different effects on the NAD:EF2-ADP ribose transferase activity of fragment A; i.e., antibody DA1 almost completely inhibited the enzymic activity at a molar ratio of one, whereas DA2 inhibited only partially and DA3 had no effect. However, when fragment A176 from the mutant toxin CRM176 (about 1/10 as active as wild type) was used, DA2 proved a more effective inhibitor than DA1. The affinities of these antibodies for the enzymically inactive mutant fragments, A197 and A228, were significantly less manifest than for wild-type fragment A. Binding of the antibodies to whole toxin and the chain termination mutant CRM45 was weak. When DA2 was introduced into Vero cells growing in monolayers, by using the red cell ghost fusion method, the cells became resistant to CRM176. The anti-fragment A antibodies may serve as the basis of a simple method for selection of cells into which other molecules have been co-introduced.  相似文献   

10.
Targeted cell ablation in animals is a powerful method for analyzing the physiological function of cell populations and generating various animal models of organ dysfunction. To achieve more specific and conditional ablation of target cells, we have developed a method termed Toxin Receptor mediated Cell Knockout (TRECK). A potential shortcoming of this method, however, is that overexpression of human heparin-binding epidermal growth factor-like growth factor (hHB-EGF) as a diphtheria toxin (DT) receptor in target cells or tissues may cause abnormalities in transgenic mice, since hHB-EGF is a member of the EGF growth factor family. To create novel DT receptors that are defective in growth factor activity and resistant to metalloprotease-cleavage, we mutated five amino acids in the extracellular EGF-like domain of hHB-EGF, which contains both DT-binding and protease-cleavage sites. Two of the resultant hHB-EGF mutants, I117A/L148V and I117V/L148V, possessed little growth factor activity but retained DT receptor activity. Furthermore, these mutants were resistant to metalloprotease-cleavage by 12-O-tetradecanoylphorbol-13-acetate stimulation, which is expected to enhance DT receptor activity. These novel DT receptors should be useful for the generation of transgenic mice by TRECK.  相似文献   

11.
We previously developed a method termed "toxin receptor-mediated cell knockout" (TRECK). By the TRECK method, a single or repeated shot(s) of diphtheria toxin (DT) conditionally ablates a specific cell population from transgenic mice expressing the DT receptor transgene under the control of a cell type-specific promoter. In some cases of TRECK, frequent and high-dose administration of DT is required, raising the concern that these frequent injections of DT could cause production of anti-DT antibody, which would neutralize further DT administration. To solve this problem, we aimed to generate transgenic mice genetically expressing a nontoxic DT mutant, with the expectation that they may naturally acquire immune tolerance to DT. Unexpectedly, the G52E DT mutant, which is well known as the nontoxic DT variant cross reacting material 197 (CRM197), exhibited cytotoxicity in yeast and mammalian cells. Cytotoxicity of CRM197 was abrogated in cells mutated for elongation factor 2 (EF-2), indicating that CRM197 exerts its toxic effects through EF-2, similar to wild-type DT. On the other hand, the K51E/E148K DT mutant exhibited no detectable cytotoxicity. This led us to successfully obtain DT gene transgenic mice, which exhibited no histological abnormalities, and indeed acquired immune tolerance to DT.  相似文献   

12.
Diphtheria toxin (DT) in acidic media forms ion-conducting channels across the plasma membrane and inhibits protein synthesis of both highly and poorly DT-sensitive cell lines. This results in loss of cell potassium and in entry of both sodium and protons with a concomitant rapid lowering of membrane potential. The pH dependency of the permeability changes is similar to that of the inhibition of cell protein synthesis. DT-induced ion channels close when the pH of the external medium is returned to neutrality and cells recover their normal monovalent cation content. Similar permeability changes were induced by two DT mutants defective either in enzymatic activity or in cell binding, but not with a mutant defective in membrane translocation. The implication of these findings for the mechanism of DT membrane translocation is discussed.  相似文献   

13.
Diphtheria toxin (DT) receptor associates with a 27-kD membrane protein (DRAP27) in monkey Vero cells. A cDNA encoding DRAP27 was isolated, and its nucleotide sequence was determined. The deduced amino acid sequence revealed that DRAP27 is the monkey homologue of human CD9 antigen. DRAP27 is recognized by CD9 antibodies. A human-mouse hybrid cell line (3279-10) possessing human chromosome 5, sensitive to DT, but not expressing CD9 antigen, was used for transfection experiments with DRAP27. When the cloned cDNA encoding DRAP27 was transiently expressed in 3279-10 cells, the total DT binding capacity was three to four times higher than that of untransfected controls. Transfectants stably expressing DRAP27 have an increased number of DT binding sites on the cell surface. Furthermore, the transfectants are 3-25 times more sensitive to DT than untransfected cells, and the sensitivity of these cells to DT is correlated with the number of DRAP27 molecules on the surface. However, when the cloned cDNA was introduced into mouse cell lines that do not express DT receptors, neither an increased DT binding nor enhancement of DT sensitivity was observed. Hence, we conclude that DRAP27 itself does not bind DT, but serves to increase DT binding and consequently enhances DT sensitivity of cells that have DT receptors. 12 proteins related to DRAP27/CD9 antigen were found through homology search analysis. These proteins appear to belong to a new family of transmembrane proteins.  相似文献   

14.
Diphtheria toxin (DT) contains separate domains for receptor-specific binding, translocation, and enzymatic activity. After binding to cells, DT is taken up into endosome-like acidic compartments where the translocation domain inserts into the endosomal membrane and releases the catalytic domain into the cytosol. The process by which the catalytic domain is translocated across the endosomal membrane is known to involve pH-induced conformational changes; however, the molecular mechanisms are not yet understood, in large part due to the challenge of probing the conformation of the membrane-bound protein. In this work neutron reflection provided detailed conformational information for membrane-bound DT (CRM197) in situ. The data revealed that the bound toxin oligomerizes with increasing DT concentration and that the oligomeric form (and only the oligomeric form) undergoes a large extension into solution with decreasing pH that coincides with deep insertion of residues into the membrane. We interpret the large extension as a transition to the open form. These results thus indicate that as a function of bulk DT concentration, adsorbed DT passes from an inactive state with a monomeric dimension normal to the plane of the membrane to an active state with a dimeric dimension normal to the plane of the membrane.  相似文献   

15.
CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients   总被引:3,自引:0,他引:3  
Purpose: Many years ago, diphtheria toxin (DT) showed antitumor activity in mice and in humans, but it was unclear whether this depended on the toxicity of the molecule only or on its strong inflammatory-immunological property as well. To deal with this open question, we planned to treat a group of cancer patients with cross-reacting material 197 (CRM197). CRM197 is a nontoxic mutant of DT that shares the immunological properties of the native molecule and its ability to bind to heparin-binding epidermal growth factor (HB-EGF), the specific cell-membrane receptor for DT that is often overexpressed in cancer. Methods: 25 outpatients with various advanced tumors who were refractory to standard therapies (23 subjects) or had refused, in whole or in part, conventional therapies (2 subjects) were treated with CRM197 injected subcutaneously in the abdominal wall, on alternate days, for 6 days. Three different dosages (1.7, 2.6, or 3.5 mg/day) were used according to the patients degree of immunological reactivity to DT/CRM197 (none, moderate, or high). Results: After the first administration of CRM197, a significant increase in the number of circulating neutrophils and in the serum level of TNF- was detected. Toxicities were minimal. Only patients with delayed-type hypersensitivity to DT/CRM197 had irritating skin reactions in the injection sites and a flu-like syndrome with fever. Pharmacokinetics showed a mean peak concentration (12.7 ng/ml) 12 h after the first injection and a mean half-life of 18.1 h. There were two complete and one partial responses (metastatic breast carcinoma, neuroblastoma, and metastatic breast carcinoma) lasting 4, 45+, and 15 months, respectively. Six cases of stable disease, lasting from 1 to 15 months, were also recorded. Conclusions: CRM197 injected subcutaneously elicited an inflammatory-immunological reaction, caused tolerable toxicities, was absorbed to a good extent into the circulatory system, and exerted some degree of biological antitumor activity. A possible role of neutrophils and TNF- in the mode of action of the molecule is hypothesized.  相似文献   

16.
The carboxyl-terminal region of diphtheria toxin (DT) has been analysed in order to determine regions of receptor recognition. Biochemical cleavage of the toxin with hydroxylamine (HA) was used to generate the peptides HA9DT (residues 454–535), HA6DT (residues 482–535), and HA3DT (residues 454–461). Characterization of HA6DT demonstrated that the final 54 amino acids of DT are sufficient to constitute the receptor-binding domain of the toxin. Within HA9DT, the region encompassing HA3DT and containing the highly cationic polyphosphate-binding site did not contribute to the binding ability of HA6DT. Consistent with this observation, HA3DT itself did not compete for binding of radiolabelled DT to Vero cells. A 30-amino acid synthetic peptide composed of residues 506–535 did not block receptor binding of DT, indicating that residues toward the amino-terminus of HA6DT, or the entire HA6DT region, are required for receptor recognition.  相似文献   

17.
The role of vacuolar-type H(+)-ATPase (V-ATPase) in the cytotoxic action of diphtheria toxin (DT) was studied by using bafilomycin A1, a specific inhibitor of V-ATPase. Studies with acridine orange showed that the acidification of intracellular acidic compartments was inhibited strongly when Vero cells were treated with 500 nM bafilomycin A1, indicating that bafilomycin effectively inhibits V-ATPase when it is added to the culture medium. The toxicity of DT to Vero cells, which was determined by the inhibition of protein synthesis by DT, was inhibited partially by bafilomycin at 10 nM and inhibited completely at 500 nM. Therefore, V-ATPase is involved in the expression of the toxicity of DT. Studies using 125I-labeled DT showed that bafilomycin inhibited the degradation of internalized DT, indicating that V-ATPase is also involved in this step. Subcellular fractionation revealed that 125I-DT accumulated mainly in the endosome fraction, and not in the lysosome fraction, when the cells were incubated with 125I-DT in the presence of bafilomycin. Under the cell fractionation conditions similar to those used for the DT-treated cells, we determined the location of 125I-labeled epidermal growth factor in the degradation pathway. The result suggests that bafilomycin A1 does not inhibit the transport of epidermal growth factor to lysosome.  相似文献   

18.
19.
Diphtheria toxin (DT) and its N-terminal fragment A (FA) catalyse the transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) into a covalent linkage with eukaryotic elongation factor 2 (eEF2). DT-induced cytotoxicity is versatile, and it includes DNA cleavage and the depolymerisation of actin filaments. The inhibition of the ADP-ribosyltransferase (ADPrT) activity of FA did not affect the deoxyribonuclease activity of FA or its interaction with actin. The toxin entry rate into cells (HUVEC) was determined by measuring the ADP-ribosyltransferase activity. DT uptake was nearly 80% after 30 min. The efficiency was determined as Km = 2.2 nM; Vmax = 0.25 pmol.min−1. The nuclease activity was tested with hyperchromicity experiments, and it was concluded that G-actin has an inhibitory effect on DT nuclease activity. In thepresence of DT and mutant of diphtheria toxin (CRM197), F-actin depolymerisation was determined with gel filtration, WB and fluorescence techniques. In the presence of DT and CRM197, 60–65% F-actin depolymerisation was observed. An in vitro FA-actin interaction and F-actin depolymerisation were reported in our previous paper. The present study thus confirms the depolymerisation of actin cytoskeleton in vivo.  相似文献   

20.
The recombinant fluorescent derivative of diphtheria toxin (EGFP-SbB) obtained by the replacement of toxin A subunit by enhanced green fluorescent protein (EGFP) has been used for visualization of the interaction of diphtheria toxin (DT) with sensitive and insensitive cells. It was shown that EGFP-SbB could interact with cell surface of both toxin-sensitive monkey cells (Vero cell line) and toxin-resistant mouse cells (3T3 cell line). The affinity of this protein for receptors of Vero cells was three times higher as compared with 3T3 cells. It was demonstrated that fluorescent derivate was able to interact with receptors of both cell lines and to internalize into these cells. Internalization of EGFP-SbB into the cells was inhibited by endocytosis inhibitor phenyl arsine oxide. We suppose that diverse sensitivity to DT of monkey and mouse cells can be explained not only by differences in their receptor affinity for DT but also by the processes that occur after internalization of the toxin into the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号