首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs “capture” dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.  相似文献   

2.
Agrobacterium rhizogenes transfers a segment of its plasmid to the plant genome. The transferred DNA contains genes which are involved in the synthesis of plant hormones. These genes express in the plant cell and give rise to rooty-tumors at the infection site. Transgenic plants can be readily regenerated from the rooty-tumors and the transferred DNA is transmitted to progeny plants. High regeneration potential and sustained maintenance of transferred DNA makes the bacterium a suitable vector for plant genetic engineering. DNA sequences homologous to the transferred DNA ofAgrobacterium rhizogenes were detected in some untransformed plant species suggesting a past infection byAgrobacterium rhizogenes during evolution of some genera, notably Nicotiana.  相似文献   

3.
DNA transfer was demonstrated from six species of donor plants to the soil bacterium, Acinetobacter spp. BD413, using neomycin phosphotransferase (nptII) as a marker for homologous recombination. These laboratory results are compatible with, but do not prove, DNA transfer in nature. In tobacco carrying a plastid insertion of nptII, transfer was detected with 0.1 g of disrupted leaves and in oilseed rape carrying a nuclear insertion with a similar quantity of roots. Transfer from disrupted leaves occurred in sterile soil and water, without the addition of nutrients. It was detected using intact tobacco leaves and intact tobacco and Arabidopsis plants in vitro. Transfer was dose-dependent and sensitive to DNase, and mutations in the plant nptII were recovered in receptor bacteria. DNA transfer using intact roots and plants in vitro was easily demonstrated, but with greater variability. Transfer varied with plant genome size and the number of repeats of the marker DNA in the donor plant. Transfer was not detected in the absence of a homologous nptII in the receptor bacteria. We discuss these results with reference to non-coding DNA in plant genomes (e.g., introns, transposons and junk DNA) and the possibility that DNA transfer could occur in nature.  相似文献   

4.
A real-time polymerase chain reaction (PCR) method for the quantification of chrysanthemum yellows (CY) phytoplasma DNA in its plant (Chrysanthemum carinatum) and insect (Macrosteles quadripunctulatus) host is described. The quantity of CY DNA was measured in each run relative to the amount of host DNA in the sample. Primers and a TaqMan probe for the specific PCR amplification of phytoplasma DNA were designed on a cloned CY-specific ribosomal fragment. Primers and TaqMan probes were also designed on sequences of the internal transcribed spacer region of the insect’s ITS1 rDNA and of the plant’s 18S rDNA for amplification from C. carinatum and M. quadripunculatus, respectively. Absolute quantification of CY DNA was achieved by comparison with a dilution series of the plasmid containing a CY 16S rDNA target sequence. Absolute quantification of plant and insect DNAs was achieved by comparison with a dilution series of the corresponding DNAs. Quantification of CY DNA in relation to host DNA was finally expressed as genome units (GU) of phytoplasma DNA per nanogram of host (plant or insect) DNA. Relative quantification avoided influences due to different yields during the DNA extraction procedure. The quantity of CY DNA was about 10,000–20,000 GU/ng of plant DNA and about 30,000–50,000 GU/ng of insect DNA. The method described could be used to phytoplasma multiplication and movement in different plant and insect hosts.  相似文献   

5.
Summary Binary Ti plasmid vector systems consist of two plasmids in Agrobacterium, where one plasmid contains the DNA that can be transferred to plant cells and the other contains the virulence (vir) genes which are necessary for the DNA transfer but are not themselves stably transferred. We have constructed two nononcogenic vectors (pARC4 and pARC8) based on the binary Ti plasmid system of Agrobacterium tumefaciens for plant transformation. Each vector contains the left and right termini sequences from pTiT37. These sequences, which determine the extent of DNA transferred to plant cells, flank unique restriction enzyme sites and a marker gene that functions in the plant (nopaline synthase in pARC4 or neomycin phosphotransferase in pARC8). After construction in vitro, the vectors can be conjugatively transferred from E. coli to any of several Agrobacterium strains containing vir genes. Using A. rhizogenes strain A4 containing the resident Ri plasmid plus a vector with the nopaline synthase marker, we found that up to 50% of the hairy roots resulting from the infection of alfalfa or tomato synthesized nopaline. Thus, vector DNA encoding an unselected marker was frequently co-transferred with Ri plasmid DNA to an alfalfa or a tomato cell. In contrast, the frequency of co-transfer to soybean cells was difficult to estimate because we encountered a high background of non-transformed roots using this species. Up to five copies of the vector DNA between the termini sequences were faithfully transferred and maintained in most cases suggesting that the termini sequences and the vir genes from the Ri and Ti plasmids are functionally equivalent.  相似文献   

6.
Bacillus species were observed and quantified by molecular approaches, using the 165 rDNA primers/probes, in a wastewater treatment plant designed for the purpose of stimulating the growth ofBacillus species. The plant has been operating as a test plant since 1997 in the city of Ina, Japan, with excellent treatment performance. Observations byin situ hybridization, usingBacillus-specific probes, indicated thatBacillus strains were inhabited in the plant and their numbers decreased during the treatment process. Similar results were obtained from a quantitative PCR analysis using aBacillus-specific primer set, and the amount of DNA originating from variousBacillus species was maximally 1.91% of the total DNA in the wastewater treatment tank. Clone library analysis using theBacillus-specific primers suggested that, while the population was noticeably increased, the phylogenetic diversity of the increasingBacillus species was very low.  相似文献   

7.
It has recently become apparent that many strains ofE. coli contain nucleases encoded by themcrA andmcrB loci that, recognize the modified base 5-methylcytosine in DNA. Plant DNAs have particularly high levels of this modification and the activity of these 5-methylcytosine-specific nucleases is particularly relevant to cloning plant genomic DNAs. We show here that for preparing libraries in a λ replacement vector, the use of suitablemcr hosts andmcr packaging mixes can increase the efficiency of cloning of plant genomic DNAs by at least two orders of magnitude. We also provide evidence that the activity of themcr nucleases is probably a significant source of bias in the representation of sequences in plant genomic libraries.  相似文献   

8.
In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A. tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2– strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA–/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro. We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.  相似文献   

9.
Telomeric DNA-binding proteins (TBPs) are crucial components that regulate the structure and function of eukaryotic telomeres and are evolutionarily conserved. We have identified two homologues of AtTBP1 (for Arabidopsis thaliana telomeric DNA binding protein 1), designated as AtTBP2 and AtTRP2, which encode proteins that specifically bind to the telomeric DNA of this plant. These proteins show extensive homology with other known plant TBPs. The isolated C-terminal segments of these proteins were capable of sequence-specific binding to duplex telomeric plant DNA in vitro. DNA bending assays using the Arabidopsis TBPs revealed that AtTBP1 and AtTBP2 have DNA-bending abilities comparable to that of the human homologue hTRF1, and higher than those of AtTRP1 and AtTRP2.  相似文献   

10.
Summary The transfer of the Agrobacterium T-DNA to plant cells involves the induction of the Ti plasmid virulence genes. This induction results in the generation of linear single-stranded (ss) copies of the T-DNA inside Agrobacterium and such molecules might be directly transferred to the plant cell. A central requirement of this ss transfer model is that the plant cell must generate a second strand and integrate the resulting double-stranded (ds) molecule into its genome. Here we report that incubating plant protoplasts with ss or ds DNA under conditions favouring DNA uptake results in transformation. The frequencies of transformation are similar and analysis of ss transformants suggests that the introduced DNA becomes double stranded and integrated. Analysis of transient expression from introduced ss DNA suggests that generation of the second strand is rapid and extrachromosomal.  相似文献   

11.
This article describes a set of protocols—for retrofitting, transformation and purification—that together enable the delivery of full-sized YAC-DNA to plant cells. To be able to equip YACs of interest with plant selectable markers, we have constructed a retrofitting vector that carriesnptII anduidA. Furthermore, we established a transformation protocol for plant protoplasts that is sufficiently efficient to support transfer of high-molecular-weight DNA. In this protocol lipofection is combined with PEG-mediated direct gene transfer. Large amounts of purified DNA are necessary for lipofection. To obtain sufficient quantities of concentrated, purified YAC-DNA, we used an optimized two-step, gel-purification method. Transient expression of a YAC-bornuidA demonstrates that both retrofitting vector and transformation protocol are effective.  相似文献   

12.
Plant transformation has its roots in the research on Agrobacterium that was being undertaken in the early 1980s. The last two decades have seen significant developments in plant transformation technology, such that a large number of transgenic crop plants have now been released for commercial production. Advances in the technology have been due to development of a range of Agrobacterium-mediated and direct DNA delivery techniques, along with appropriate tissue culture techniques for regenerating whole plants from plant cells or tissues in a large number of species. In addition, parallel developments in molecular biology have greatly extended the range of investigations to which plant transformation technology can be applied. Research in plant transformation is concentrating now not so much on the introduction of DNA into plant cells, but rather more on the problems associated with stable integration and reliable expression of the DNA once it has been integrated.  相似文献   

13.
The cyanobacterium Anabaena has both symbiotic and free-living forms. The genetic diversity of Anabaena strains symbiotically associated with the aquatic fern Azolla and the evolutionary relationships among these symbionts were evaluated by means of RFLP (restriction fragment length polymorphism) experiments. Three DNA fragments corresponding to nif genes were cloned from the free-living cyanobacterium Anabaena PCC 7120 and used as probes. A mixture of Azolla, Anabaena and bacterial DNA was extracted from Azolla fronds and digested with two restriction enzymes. Single-copy RFLP signals were detected with two of the probes in all Azolla Anabaena examined. Multiple-copy RFLP signals were obtained from the third probe which corresponded to a part of the nif N gene. A total of 46 probe/enzyme combinations were scored as present or absent and used to calculate pairwise Nei's genetic distances among symbiotic Anaebaena strains. Phylogenetic trees summarizing phenetic and cladistic relationships among strains were generated according to three different evolutionary scenarios: parsimony, UPGMA and neighbour joining. All trees revealed identical phylogenetic relationships. Principal component analysis was also used to evaluate genetic similarities and revealed three groups: group one contains the cyanobacteria associated with plants from the Azolla section, group two contains those associated with plants from the pinnata species and group three contains those associated with plants from the nilotica species. The same groups had already been identified earlier in a random amplified polymorphic DNA (RAPD) analysis of Azolla-Anbaena DNA complexes, suggesting that the present Azolla taxonomy should be revised. We now suggest a taxonomy of Anabaena azollae that is parallel to such a revised Azolla taxonomy. An Azolla chloroplast DNA sequence derived from Oryza sativa was also used as an RFLP probe on Azolla DNA to confirm the presence of plant DNA in the total genomic DNA extracted from ferns with or without the symbiont. Our results also suggest that total DNA extracted from the Azolla-Anabaena complexes includes both plant and symbiont DNA and can be used equally well for RFLP analysis of host plant or symbiotic cyanobacteria.  相似文献   

14.
Summary Plants of two natural populations of Beta maritima, characterized by high percentages of male-sterile plants, have been investigated for organelle DNA polymorphism. We confirm the two classes of mitochondrial DNA variation previously described: (i) mitochondrial DNA (mtDNA) type N is associated with male fertility, whereas mtDNA type S can cause cytoplasmic male sterility (CMS); (ii) the 10.4-kb linear plasmid is observed in both types of mitochondria and is not correlated with the cytoplasmic male sterility occurring in this plant material. A third polymorphism is now described for chloroplast DNA (ctDNA). This polymorphism occurs within single populations of Beta maritima. Three different ctDNA types have been identified by HindIII restriction analysis. Among the plants studied, ctDNA type 1 is associated with N mitochondria and type 2 with S mitochondria. Chloroplast DNA type 3 has been found both in a fertile N plant and in a sterile S plant. This finding suggests that the chloroplast DNA polymorphism reported is not involved in the expression of male sterility. A comparison with Beta vulgaris indicates that ctDNA type 3 of Beta maritima corresponds to the ctDNA of fertile sugar beet maintainer lines. The three types of Beta maritima ctDNA described in this study differ from the ctDNA of male-sterile sugar beet.  相似文献   

15.
The human UV-damaged DNA binding protein (UV-DDB), a heterodimeric protein composed of 127 kDa (UV-DDB1) and 48 kDa (UV-DDB2) subunits, has been shown to be involved in DNA repair. To elucidate the in vivo function of plant UV-DDB2, we have analyzed T-DNA insertion mutants of the Arabidopsis thaliana UV-DDB2 subunit (atuv-ddb2 mutants) and AtUV-DDB2 RNAi silenced plants (atuv-ddb2 silenced plants). atuv-ddb2 mutants and atuv-ddb2 silenced plants were both viable, suggesting that AtUV-DDB2 is not essential for survival. Interestingly, both plant types showed a dwarf phenotype, implying impaired growth of the meristem. To the best of our knowledge, this is the first occasion that a dwarf phenotype has been found to be associated with a UV-DDB2 mutation in either plants or animals. The mutants also demonstrated increased sensitivity to UV irradiation, methyl methanesulfonate and hydrogen peroxide treatment, indicating that AtUV-DDB2 is also involved in DNA repair. Our results lead us to suggest that not only does AtUV-DDB2 function in DNA repair, it also has a direct or indirect influence on cell proliferation in the plant meristem. Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries.  相似文献   

16.
Summary Mitochondrial DNA ofSpirodela oligorhiza (duck weed) was analyzed with restriction enzymes. The genome size appears to be at least 250 kbp. Four different PstI fragments were cloned. These four clones contain a sequence which is reiterated about 100-fold on theSpirodela mitochondrial DNA. Hybridization analysis showed that a similar sequence is present onZea mays mitochondrial DNA, although much less reiterated here. The presence of these reiterated sequences might contribute to the physical heterogeneity of plant mitochondrial DNA.  相似文献   

17.
The fungus Peronospora parasitica (Pers. ex Fr.) Fr. is an obligate biotroph infecting a wide range of host species in the family Cruciferae. Isolates from different hosts are morphologically similar, and pathotypes are usually distinguished on the basis of host range. Random Amplified Polymorphic DNA (RAPD) fingerprints were generated from a range of P. parasitica isolates from different Brassica species. Reaction conditions, in particular DNA template, primer and Mg2+ concentrations, were optimized to ensure that amplifications were reproducible. Possible artefacts arising through host plant DNA were assessed by including such DNA in control reactions. Confirmation that diagnostic RAPD bands were generated from fungal DNA was also obtained by Southern hybridization of a RAPD band to genomic fungal DNA. By screening 20 decamer primers, 2 were found to detect sufficient genetic variation to allow complete differentiation between pathotypes. These results illustrate the potential value of RAPDs for detecting polymorphisms between isolates of a non-culturable plant pathogenic fungus.  相似文献   

18.
Summary Plasmid rescue can provide an efficient way of cloning T-DNA-tagged genomic DNA of plants. However, rescue has often been hampered by extensive rearrangements in the cloned DNA. We have demonstrated using a transgenic line ofArabidopsis thaliana that the plant DNA flanking the T-DNA tag was heavily cytosine methylated. This methylation could be completely inhibited by growing the plants in the presence of azacytidine. Rescue of the T-DNA tag together with the flanking plant genomic DNA sequences from nontreated control plants into an modified cytosine restriction (mcr) proficient strain ofEscherichia coli resulted in rearrangements of the majority of the rescued plasmids. These rearrangements could be avoided if the methylation was inhibited in the transgenic plants by azacytidine treatment or by cloning into anmcr-deficient strain ofE. coli. The results indicate that cytosine methylation of the DNA in the transgenic plants is the main cause of the DNA rearrangements observed during plasmid rescue and suggest efficient strategies to eliminate such artifacts.  相似文献   

19.
European Black Poplar (Populus nigra) is considered a rare and endangered tree species because of severe reduction of its natural riverine habitat and potential hybridisation with the related non-indigenous taxa P. deltoides and P. x canadensis. As it is difficult to distinguish these taxa solely based on their morphology, we applied a PCR-based assay with an easy-to-use and robust molecular marker set (cpDNA trnL-trnF/RsaI RFLP, nDNA win3 and nDNA POPX/MspI RFLP) in order to identify pure P. nigra. Different plant tissues could be used for fast and standardised DNA extraction. The application of the three marker types was tested on a number of different Populus taxa, and they were also used for the verification of pure P. nigra in a sample of 304 putative P. nigra individuals from Switzerland. Cross-checking of the DNA data with those using a traditional allozyme approach resulted in complete agreement. The availability of molecular identification methods is an important prerequisite for the conservation of European Black Poplar, because pure, non-introgressed plant material can then be used in restoration projects of European floodplains.  相似文献   

20.
Summary We have determined the DNA sequence of aRhizobium meliloti gene that encodes glutamine synthetase II (GSII). The deduced amino acid sequence was compared to that ofBradyrhizobium japonicum GSII and those of various plant and mammalian glutamine synthetases (GS) in order to evaluate a proposal that the gene for this enzyme was recently transferred from plants to their symbiotic bacteria. There is 83.6% identity between theR. meliloti andB. japonicum proteins. The bacterial GSII proteins average 42.5% identity with the plant GS proteins and 41.8% identity with their mammalian counterparts. The plant proteins average 53.7% identity with the mammalian proteins. Thus, the GS proteins are highly conserved and the divergence of these proteins is proportional to the phylogenetic divergence of the organisms from which the sequences were determined. No transfer of genes across large taxonomic gaps is needed to explain the presence of GSII in these bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号