共查询到20条相似文献,搜索用时 15 毫秒
1.
Ziegler DR Ribeiro LC Hagenn M Siqueira IR Araújo E Torres IL Gottfried C Netto CA Gonçalves CA 《Neurochemical research》2003,28(12):1793-1797
Ketogenic diets have been used in the treatment of refractory childhood epilepsy for almost 80 years; however, we know little about the underlying biochemical basis of their action. In this study, we evaluate oxidative stress in different brain regions from Wistar rats fed a ketogenic diet. Cerebral cortex appears to have not been affected by this diet, and cerebellum presented a decrease in antioxidant capacity measured by a luminol oxidation assay without changes in antioxidant enzyme activities—glutathione peroxidase, catalase, and superoxide dismutase. In the hippocampus, however, we observed an increase in antioxidant activity accompanied by an increase of glutathione peroxidase (about 4 times) and no changes in lipoperoxidation levels. We suggest that the higher activity of this enzyme induced by ketogenic diet in hippocampus might contribute to protect this structure from neurodegenerative sequelae of convulsive disorders. 相似文献
2.
Bogdan Dolezych Elzbieta Szulinska 《Journal of trace elements in medicine and biology》2003,17(2):133-137
The aim of this study was to show the direct effect of selenium on glutathione peroxidase (GSH-Px) activity and GSH/GSSG concentrations in 3- and 6-month-old mice. An ozone-oxygen mixture was used to provoke an oxygen stress. To measure the Se-effect mice were gavaged with sodium selenite. GSH-Px activity and total glutathione concentrations were determined in serum and in the postnuclear fraction of liver and lungs. Additionally glutathione concentrations were determined in whole blood. Both ozone and selenium, administered separately, reduced GSH-Px activity in lungs of 6-month-old animals, while in young mice an opposite effect of Se was observed. Ozone administered jointly with Se did not influence GSH-Px activity in 6-month-old mice, while in young, 3-month-old mice, a stimulatory effect in lungs was observed. There were no significant changes in GSH-Px activity in the liver of 6-month-old mice, but the stimulatory effect occurred in young mice treated with Se and Se & ozone jointly. In young mice, ozone (also ozone with Se) augmented glutathione concentrations. The response to ozone and selenium strictly depended on age and the antagonism between selenium and ozone was observed only in a few cases. 相似文献
3.
4.
The risk of developing breast cancer increases after long term use of oestrogen and progestagen, and carcinogenesis in the breast is partly due to oxidative damage to DNA bases. Therefore, we studied the effects of 17 β-oestradiol and progesterone on the antioxidative status and the vulnerability to oxidative stress exhibited by normal human breast epithelial cells in culture. After exposure to hydrogen peroxide, cells grown with oestradiol alone or with both oestradiol and progesterone showed significantly decreased viability compared to cells grown in medium without added hormones. There was, however, no difference in hydrogen peroxide degradation rate between controls and hormone treated cultures. When desferrioxamine was added, the viability increased and the hydrogen peroxide degradation rate decreased. The levels of several antioxidants were altered in cells grown in the presence of oestradiol and progesterone: the concentrations of glutathione reductase and catalase decreased significantly while the levels of glutathione peroxidase and reduced glutathione did not change. The alterations in enzyme activity and cell vulnerability were more pronounced in cultures treated with a combination of oestradiol and progesterone.
We conclude that the redox balance in the cultured normal human breast epithelial cells was altered by treatment with oestradiol and progesterone, and that this change led to the increased death of cells subsequently exposed to hydrogen peroxide. This effect may have implications for sex hormone dependent diseases of the breast. 相似文献
We conclude that the redox balance in the cultured normal human breast epithelial cells was altered by treatment with oestradiol and progesterone, and that this change led to the increased death of cells subsequently exposed to hydrogen peroxide. This effect may have implications for sex hormone dependent diseases of the breast. 相似文献
5.
Mustafa Kayan Mustafa Nazıroğlu Ömer Çelik Kadir Yalman Halis Köylü 《Cell biochemistry and function》2009,27(7):424-429
X‐ray radiation is detrimental to human cells and may lead to development of life‐threatening diseases. Cigarette smoke contains about 500 chemicals that include organic and oxidant compounds whereas vitamin C and E (VCE) have scavenger effects on the compounds. We investigated effects of VCE administration on X‐ray‐induced oxidative toxicity in blood of smoker and nonsmoker X‐ray technicians. Twenty technicians and 30 healthy age‐matched subjects control were used in the study. Ten of the X‐ray technicians and 15 of the control were smokers. Blood samples were taken from the control. Oral vitamin C (500 mg) and vitamin E (150 mg) were daily supplemented to the smoker and nonsmoker X‐ray technicians for 5 weeks. Blood samples were taken from the X‐ray technicians after and before 5 weeks. Plasma and erythrocytes lipid peroxidation (LP), reduced glutathione (GSH) levels, erythrocytes glutathione peroxidase (GSH‐Px), and plasma antioxidant vitamin concentrations were investigated in control and X‐ray technicians with smoker and nonsmoker. Plasma and erythrocytes LP levels were higher in the total X‐ray group and smoker X‐ray group than in control and nonsmoker X‐ray group, respectively although the LP level was decreased by the VCE treatment. The plasma vitamin C, vitamin A, vitamin E, and β‐carotene concentrations were lower in the X‐ray group than in control although their concentrations were increased by the treatment. The erythrocytes GSH level and GSH‐Px activity were found to be higher in the treatment group than in the X‐ray group. Plasma GSH level was not found to be different in all group. Reactive oxygen species may play role in the mechanism that has been proposed to explain the biological side effect of X‐ray radiation and smoke. VCE prevents the smoke and X‐ray‐induced oxidative stress to strengthen antioxidant vitamin concentrations in the blood of the technicians. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
6.
Serum antioxidant enzyme activity in Parkinson's disease 总被引:2,自引:0,他引:2
Jawahar Kalra Ali H. Rajput Subrahmanyam V. Mantha Kailash Prasad 《Molecular and cellular biochemistry》1992,110(2):165-168
Summary The activities of superoxide dismutase (SOD; EC 1.15.1.1) and glutathione peroxidase (GSHPx; EC 1.11.1.9.), the enzymes that metabolize the superoxide anion and hydrogen peroxide, respectively, were measured in serum
from healthy subjects and patients with Parkinson's disease (PD). The activities of SOD and GSHPx in patients with PD were higher than those in normal healthy individuals. These results suggest that the increased activities
of these enzymes could be due to oxidative stress in the initial stages of this disease. 相似文献
7.
8.
Yoshimura K Miyao K Gaber A Takeda T Kanaboshi H Miyasaka H Shigeoka S 《The Plant journal : for cell and molecular biology》2004,37(1):21-33
To evaluate the physiological potential of the defense system against hydroperoxidation of membrane-lipid components caused by environmental stresses in higher plants, we generated transgenic tobacco plants expressing a glutathione peroxidase (GPX)-like protein in the cytosol (TcGPX) or chloroplasts (TpGPX). The activities toward alpha-linolenic acid hydroperoxide in TcGPX and TpGPX plants were 47.5-75.3 and 32.7-42.1 nM min(-1) mg(-1) protein, respectively, while no activity was detected in wild-type plants. The transgenic plants showed increased tolerance to oxidative stress caused by application of methylviologen (MV: 50 microM) under moderate light intensity (200 micro E m(-2) sec(-1)), chilling stress under high light intensity (4 degrees C, 1000 microE m(-2) sec(-1)), or salt stress (250 mM NaCl). Under these stresses, the lipid hydroperoxidation (the production of malondialdehyde (MDA)) of the leaves of TcGPX and TpGPX plants was clearly suppressed compared with that of wild-type plants. Furthermore, the capacity of the photosynthetic and antioxidative systems in the transgenic plants remained higher than those of wild-type plants under chilling or salt stress. These results clearly indicate that a high level of GPX-like protein in tobacco plants functions to remove unsaturated fatty acid hydroperoxides generated in cellular membranes under stress conditions, leading to the maintenance of membrane integrity and increased tolerance to oxidative stress caused by various stress conditions. 相似文献
9.
Vanja Radišić Biljak Lada Rumora Ivana Čepelak Dolores Pancirov Sanja Popović‐Grle Jasna Sorić Tihana Žanić Grubišić 《Cell biochemistry and function》2010,28(6):448-453
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation and oxidant/antioxidant imbalance. Glutathione is the most abundant cellular low‐molecular weight thiol and the glutathione redox cycle is the fundamental component of the cellular antioxidant defence system. Concentration of total glutathione and catalytic activities of glutathione peroxidase and glutathione reductase were determined in peripheral blood of patients (n = 109) and healthy subjects (n = 51). Concentration of total glutathione in patients was not changed in comparison to healthy controls. However, we found statistically significant difference between patients with moderate and severe disease stages. Glutathione reductase activity was increased, while glutathione proxidase activity was decreased in the patients with COPD, when compared to healthy controls. We found no significant difference in glutathione peroxidase and glutathione reductase activities between stages. Patients who smoked had lower concentration of total glutathione compared with former smokers and never‐smoking patients. Lung function parameters were inversely associated with glutathione level. Evidence is presented for differential modulation of glutathione peroxidase and glutathione reductase activities in peripheral blood of patients with stable COPD. We suppose that in addition to glutathione biosynthesis, glutathione reductase‐dependent regulation of the glutathione redox state is vital for protection against oxidative stress. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
10.
11.
H2O2 can freely crosses membranes and in the presence of Fe2+ (or Cu+) it is prone to participate in Fenton reaction. This study evaluated the concentration and time-dependent effects of H2O2-induced oxidative stress on MnSOD, Se:GPx and catalase and on aconitase. Acute and chronic H2O2 treatments were able to induce oxidative stress in HeLa cells as they significantly decreased aconitase activity and also caused a very significant decrease on antioxidant enzyme activities. The inhibition of enzyme activities was time- and concentration-dependent. Chronic treatment with 5 µM H2O2/h after 24 h was able to decrease all enzyme activities almost at the same level as the acute treatment. Acute and chronic treatments on antioxidant enzyme activities were prevented by cell treatment with ascorbic acid or N-acetylcysteine. These results indicate that antioxidant enzymes can also be affected by the same ROS they produce or neutralize if the time of exposure is long enough. 相似文献
12.
13.
Excess of free iron is thought to harm plant cells by enhancing the intracellular production of reactive oxygen intermediates (ROI). Cytosolic ascorbate peroxidase (cAPX) is an iron-containing, ROI-detoxifying enzyme induced in response to iron overload or oxidative stress. We studied the expression of cAPX in leaves of de-rooted bean plants in response to iron overload. cAPX expression, i.e., mRNA and protein, was rapidly induced in response to iron overload. This induction correlated with the increase in iron content in leaves and occurred in the light as well as in the dark. Reduced glutathione (GSH), which plays an important role in activating the ROI signal transduction pathway as well as in ROI detoxification, was found to enhance the induction of APX mRNA by iron. To determine whether cAPX induction during iron overload was due to an increase in the amount of free iron, which serves as a co-factor for cAPX synthesis, or due to iron-mediated increase in ROI production, we tested the expression of APX in leaves under low oxygen pressure. This treatment, which suppresses the formation of ROI, completely abolished the induction of cAPX mRNA during iron overload, without affecting the rate of iron uptake by plants. Taken together, our results suggest that high intracellular levels of free iron in plants lead to the enhanced production of ROI, which in turn induces the expression of cAPX, possibly using GSH as an intermediate signal. We further show, using cAPX-antisense transgenic plants, that cAPX expression is essential to prevent iron-mediated tissue damage in tobacco. 相似文献
14.
Kaul N. Siveski-Iliskovic N. Hill M. Khaper N. Seneviratne C. Singal P. K. 《Molecular and cellular biochemistry》1996,160(1):283-288
Earlier we reported that probucol treatment subsequent to the induction of diabetes can prevent diabetes-associated changes in myocardial antioxidants as well as function at 8 weeks. In this study, we examined the efficacy of probucol in the reversal of diabetes induced myocardial changes. Rats were made diabetic with a single injection of streptozotocin (65 mg/kg, i.v.). After 4 weeks of induction of diabetes, a group of animals was treated on alternate days with probucol (10 mg/kg i.p.), a known lipid lowering agent with antioxidant properties. At 8 weeks, there was a significant drop in the left ventricle (LVSP) and aortic systolic pressures (ASP) in the diabetic group. Hearts from these animals showed an increase in the thiobarbituric acid reacting substances (TBARS), indicating increased lipid peroxidation. This was accompanied by a decrease in the myocardial antioxidant enzymes activities, superoxide dismutase (SOD) and glutathione peroxidase (GSHPx). Myocardial catalase activity in the diabetic group was higher. In the diabetic + probucol group both LVSP and ASP showed significant recovery. This was also accompanied by an improvement in SOD and GSHPx activities and there was further increase in the catalase activity. Levels of the TBARS were decreased in this group. These data provide evidence that diabetic cardiomyopathy is associated with an antioxidant deficit which can be reversed with probucol treatment. Improved cardiac function with probucol may be due to the recovery of antioxidants in the heart. 相似文献
15.
A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues 总被引:5,自引:0,他引:5
Since selenium and vitamin E have been increasingly recognized as an essential element in biology and medicine, current research
activities in the field of human medicine and nutrition are devoted to the possibilities of using these antioxidants for the
prevention or treatment of many diseases. The present study was aimed at investigating and comparing the effects of dietary
antioxidants on glutathione reductase and glutathione peroxidase activities as well as free and protein-bound sulfhydryl contents
of rat liver and brain tissues. For 12–14 wk, both sex of weanling rats were fed a standardized selenium-deficient and vitamin
E-deficient diet, a selenium-excess diet, or a control diet. It is observed that glutathione reductase and glutathione peroxidase
activities of both tissues of the rats fed with a selenium-deficient or excess diet were significantly lower than the values
of the control group. It is also shown that free and bound sulfhydryl concentrations of these tissues of both experimental
groups were significantly lower than the control group. The percentage of glutathione reductase and glutathione peroxidase
activities of the deficient group with respect to the control were 50% and 47% in liver and 66% and 61% in the brain, respectively;
while these values in excess group were 51% and 69% in liver and 55% and 80% in brain, respectively. Free sulfhydryl contents
of the tissues in both experimental groups showed a parallel decrease. Furthermore, the decrease in protein-bound sulfhydryl
values of brain tissues were more pronounced than the values found for liver. It seems that not only liver but also the brain
is an important target organ to the alteration in antioxidant system through either a deficiency of both selenium and vitamin
E or an excess of selenium alone in the diet. 相似文献
16.
The current study confirmed earlier conclusions regarding differential ozone (O3) tolerances of two soybean cultivars, Essex and Forrest, and evaluated antioxidant enzyme activities of these two varieties
based on their performance under environmentally relevant, elevated O3 conditions. The experiment was conducted in open-top chambers in the field during the 1994 and 1995 growing seasons. Exposure
of plants to moderately high O3 levels (62.9 nl l−1 air, 2-year seasonal average) caused chlorophyll loss and increased membrane permeability when compared to control plants
grown in charcoal filtered air (24.2 nl l−1 air). The other effects of O3 treatment were decrease in seed yield, loss of total sulfhydryl groups, reduction of soluble protein content, and increase
in guaiacol peroxidase activity in leaves of both cultivars. The O3-induced increase in guaiacol peroxidase activity was much smaller in cv. Essex leaflets. Cv. Essex had less leaf oxidative
damage and smaller reduction in seed yield than cv. Forrest under elevated O3 conditions. During ozonation, mature leaflets of the more O3 tolerant cv. Essex had higher levels of glutathione reductase (30%), ascorbate peroxidase (13%), and superoxide dismutase
(45%) activity than did mature leaflets of cv. Forrest. Cu,Zn-superoxide dismutase, which represented 95% of total superoxide
dismutase activity in the two cultivars, appeared to be increased by O3 exposure in the leaflets of O3 tolerant cv. Essex but not in those of cv. Forrest. Cytosolic ascorbate peroxidase activity was also higher in leaflets of
cv. Essex than in cv. Forrest regardless of O3 level. Stromal ascorbate peroxidase and Mn-superoxide dismutase activity did not appear to be involved in the O3 tolerance of the two soybean cultivars.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
17.
Teresa C. S. Sigaud-Kutner Ernani Pinto Ana M. P. Neto Pio Colepicolo 《Phycological Research》2005,53(3):209-214
Catalase (CAT; EC 1.11.1.6) and ascorbate peroxidase (APX; EC 1.11.1.11) activities, as well as malondialdehyde (MDA) and reduced glutathione (GSH) and oxidized glutathione (GSSG) contents, were determined during the growth of the unicellular marine alga Lingulodinium polyedrum (Stein) Dodge in batch‐cultures. CAT and APX activity peaks were detected at the beginning of algal exponential growth, although declining trends were subsequently identified in both enzymes, with a slight increase in CAT activity at the end of the experimental period. MDA content attained maximum values from day 0–3 and at the end of the experimental period (day 21), declining halfway from day 10–14. GSH and GSSG contents presented the highest values at the beginning of the growth curve, decreasing from day 3 onwards. Despite the depletion of the GSH pool, an upward trend was observed in the (GSH) (0.5 GSSG + GSH)?1 ratio, indicating that the L. polyedrum cells were able to maintain an increasing redox potential along exponential and linear growth phases in their efforts to prevent oxidative stress. 相似文献
18.
Md Aashique Amrita Roy Alan Diamond Soumen Bera 《Journal of cellular biochemistry》2019,120(3):3393-3400
Specific genetic variations in the gene for the selenium-containing antioxidant protein glutathione peroxidase 1 (GPX1) are associated with the risk of a variety of common diseases, including cancer, diabetes, and cardiovascular disorders. Two common variations have been focused upon, one resulting in leucine or proline at codon 198 and another resulting in 5, 6, or 7 alanine repeats were previously shown to affect the distribution of GPX1 between the cytoplasm and mitochondria. Human MCF7 cells engineered to exclusively express GPX1 with five alanine repeats at amino terminus and proline at codon 198 (A5P) and seven alanine repeats at amino terminus and leucine at codon 198 (A7L), as well as derivatives targeted to the mitochondria by the addition of a mitochondrial localization sequence (mA5P and mA7L) were used to assess the consequences of the expression of these proteins on the cellular redox state and bioenergetics. Ectopic expression of A5P and A7L reduced the levels of reactive oxygen species, and the mitochondrially targeted derivatives exhibited better activity in these assays. Bioenergetics and mitochondrial integrity were assessed by measuring mitochondrial membrane potential, oxygen consumption, adenosine triphosphate (ATP) levels, and the levels of lactate dehydrogenase. The results of these assays indicated distinctively, and sometimes opposing, patterns with regard to differences between the consequences of the expression of A5P, A7L, mA5P, and mA7L. These data provide new information on the consequences of differences in the primary structure and cellular location of GPX1 proteins and contribute to the understanding of how these effects might contribute to human disease. 相似文献
19.
Per Schmidt Sørensen Jens C. Hansen Jesper Mai Lene R. Nielsen Troels Sørensen 《Biological trace element research》1992,33(1-3):145-150
Glutathione peroxidase, one of the major antioxidants in the human brain, has been found to have decreased activity in patients suffering from multiple sclerosis (MS). This study compares the activity of lymphocyte glutathione peroxidase (L-GSH-px) in MS patients suffering from acute relapses with clinically stable MS patients and with control patients referred with nondemyelinating neurological diseases. All three groups showed an increase of mean enzymatic activity (MEA) during the observation period. The highest MEA in this study was observed in the MS groups. However, there were no significant differences in the L-GSH-px activity in the three groups. These results are not in accordance with previous investigations, and the need for further research in this field is emphasized. 相似文献
20.
T. Rannem K. Ladefoged E. Hylander J. Hegnhøj S. Jarnum 《Biological trace element research》1993,39(1):81-90
Severe selenium (Se) depletion was found in nine patients receiving long-term home parenteral nutrition because of short bowel syndrome. Plasma Se ranged from 0–0.51 (median 0.21 μmol/L) and erythrocyte Se ranged from 0.7–2.6 (median 1.8 μmol/gHgb), which was significantly lower than in the controls. Glutathione peroxidase (GSHPx) in plasma and erythrocytes was also decreased. After bolus injections with 200 μg Se/d in the form of sodium selenite for 4 mo, followed by 100 μg/d for 8 mo, plasma Se increased to values slightly but significantly higher than in the controls. Erythrocyte Se reached normal levels in most of the patients after 4 mo substitution, but it remained lower than in the controls. Following Se supplementation, plasma and erythrocyte GSHPx did not differ between patients and controls. These data suggest that all patients receiving long-term parenteral nutrition because of short bowel syndrome should receive at least 100 μg sodium selenite/d when given as bolus injections to avoid Se depletion. 相似文献