首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The active site sequence of T4 thioredoxin, Cys-Val-Tyr-Cys, has been modified in two positions to Cys-Gly-Pro-Cys to mimic that of Escherichia coli thioredoxin. The two point mutants Cys-Gly-Tyr-Cys and Cys-Val-Pro-Cys have also been constructed. The mutant proteins have similar reaction rates with T4 ribonucleotide reductase as has the wild-type T4 thioredoxin. Mutant T4 thioredoxins with Pro instead of Tyr at position 16 in the active site sequence have three to four times lower apparent KM with E. coli ribonucleotide reductase than wild-type T4 thioredoxin. The KM values for these mutant proteins which do not have Tyr in position 16 are thus closer to E. coli thioredoxin than to the wild-type T4 thioredoxin. The bulky tyrosine side chain probably prevents proper interactions to E. coli ribonucleotide reductase. Also the redox potentials of these two mutant thioredoxins are lower than that of the wild-type T4 thioredoxin and are thereby more similar to the redox potential of E. coli thioredoxin. Mutations in position 15 behave more or less like the wild-type protein. The kinetic parameters with E. coli thioredoxin reductase are similar for wild-type and mutant T4 thioredoxins except that the apparent kcat is lower for the mutant protein with Pro instead of Tyr in position 16. The active site sequence of T4 thioredoxin has also been changed to Cys-Pro-Tyr-Cys to mimic that of glutaredoxins. This change does not markedly alter the reaction rate of the mutant protein with T4 ribonucleotide reductase or E. coli thioredoxin reductase, but the redox potential is lower for this mutant protein than for wild-type T4 thioredoxin.  相似文献   

2.
The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated.  相似文献   

3.
Characterization of Escherichia coli-Anabaena sp. hybrid thioredoxins   总被引:2,自引:0,他引:2  
Thioredoxin is a small redox protein with an active-site disulfide/dithiol. The protein from Escherichia coli has been well characterized. The genes encoding thioredoxin in E. coli and in the filamentous cyanobacterium Anabaena PCC 7119 have been cloned and sequenced. Anabaena thioredoxin exhibits 50% amino acid identity with the E. coli protein and interacts with E. coli enzymes. The genes encoding Anabaena and E. coli thioredoxin were fused via a common restriction site in the nucleotide sequence coding for the active site of the proteins to generate hybrid genes, coding for two chimeric thioredoxins. These proteins are designated Anabaena-E. coli (A-E) thioredoxin for the construct with the Anabaena sequence from the N-terminus to the middle of the active site and the E. coli sequence to the C-terminus, and E. coli-Anabaena (E-A) for the opposite construct. The gene encoding the A-E thioredoxin complements all phenotypes of an E. coli thioredoxin-deficient strain, whereas the gene encoding E-A thioredoxin is only partially effective. Purified E-A thioredoxin exhibits a much lower catalytic efficiency with E. coli thioredoxin reductase and ribonucleotide reductase than either E. coli or Anabaena thioredoxin. In contrast, the A-E thioredoxin has a higher catalytic efficiency in these reactions than either parental protein. Reaction with antibodies to E. coli and Anabaena thioredoxins shows that the antigenic determinants for thioredoxin are located in the C-terminal part of the molecule and retain the native conformation in the hybrid proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A redox protein gene (PH0178) with high sequence homology to a glutaredoxin from Pyrococcus furiosus and a thioredoxin reductase homologue gene (PH1426) were found in the genome sequence of Pyrococcus horikoshii. These two genes were cloned and the corresponding expressed proteins were characterized. The redox protein from PH0178 had strong thioredoxin-like activity, but no glutaredoxin activity. The protein from PH1426 had some reductase activity against thioredoxin from Escherichia coli as well as the redox protein (PH0178). The protein from PH1426 was a typical, homodimeric flavoprotein. These results indicate that the redox protein (PH0178) is not a glutaredoxin but, rather, a new protein-disulfide oxidoreductase that is involved in a thioredoxin-like system with thioredoxin reductase (PH1426) in P. horikoshii. The redox protein and thioredoxin reductase retained their full activities for over 1h at 100 degrees C. The redox potential of the redox protein was similar to that of thioredoxin from E. coli and lower than that of glutathione. Site-directed mutagenesis studies revealed that the active site of the redox protein corresponds to a CPYC sequence, located in the middle of the sequence.  相似文献   

5.
In a previous study, we reported the isolation of a cDNA encoding KDRF (KM-102-derived reductase like factor) from the human bone marrow-derived stromal cell line KM-102. Analysis of the sequence of this cDNA revealed it to be the previously reported human thioredoxin reductase cDNA. Human thioredoxin reductase, which was recently isolated from human lung adenocarcinoma NCI-H441 cells as a selenocysteine-containing selenoprotein, and its substrate thioredoxin are thought to be essential for protecting cells from the damage caused by reactive oxygen species. To obtain the selenocysteine-containing recombinant KDRF/thioredoxin reductase, we introduced a secondary structure, which is identical to the selenocysteine insertion signal of Escherichia coli formate dehydrogenase H mRNA, downstream of the TGA in the KDRF/thioredoxin reductase cDNA and expressed it in E. coli. As a result, a significant amount of selenocysteine was incorporated into the C-terminus of the KDRF/thioredoxin reductase protein. The selenocysteine-containing KDRF/thioredoxin reductase showed reducing activities toward human and E. coli thioredoxin, whereas non-selenocysteine-containing KDRF/thioredoxin reductase showed no enzyme activity. Our results suggest that this strategy will be applicable to the production of other mammalian selenocysteine-containing selenoproteins in E. coli.  相似文献   

6.
The DNA sequence of the Salmonella typhimurium ahp locus was determined. The locus was found to contain two genes that encode the two proteins (C22 and F52a) that comprise the S. typhimurium alkyl hydroperoxide reductase activity. The predicted sequence of the F52a protein component of the alkyl hydroperoxide reductase was found to be highly homologous to the Escherichia coli thioredoxin reductase protein (34% identity with many conservative substitutions). The homology was found to be particularly striking in the region containing the redox-active cysteines of the thioredoxin reductase molecule, and among the identities were the redox-active cysteines themselves. Aside from the strong similarity to thioredoxin reductase, overall homology between the F52a protein and other flavoprotein disulfide oxidoreductases such as glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase was found to be rather limited, and the conserved active site segment common to the three proteins was not observed within the F52a protein. However, three short segments that have been implicated in FAD and NAD binding were found to be conserved between the F52a protein and the other disulfide reductases. These results suggest that the alkyl hydroperoxide reductase is the second known member of a class of disulfide oxidoreductases which was represented previously by thioredoxin reductase alone; they also allow the putative assignment of several functional domains.  相似文献   

7.
A second thioredoxin, distinct from the one reported by Meng and Hogenkamp in 1981 (J. Biol. Chem. 256, 9174-9182), has been purified to homogeneity from an Escherichia coli strain containing a plasmid encoding a Corynebacterium nephridii thioredoxin. Thioredoxin genes from C. nephridii were cloned into the plasmid pUC13 and transformants were identified by complementation of a thioredoxin negative (trxA-) E. coli strain. The abilities of the transformants to support the growth of several phages suggested that more than one thioredoxin had been expressed [Lim et al. (1987) J. Biol. Chem. 262, 12114-12119]. In this paper we present the purification and characterization of one of these thioredoxins. The new thioredoxin from C. nephridii, designated thioredoxin C-2, is a heat-stable protein containing three cysteine residues/molecule. It serves as a substrate for C. nephridii thioredoxin reductase and E. coli and Lactobacillus leichmannii ribonucleotide reductases. Thioredoxin C-2 catalyzes the reduction of insulin disulfides by dithiothreitol or by NADPH and thioredoxin reductase and is a hydrogen donor for the methionine sulfoxide reductase of E. coli. Spinach malate dehydrogenase (NADP+) and phosphoribulokinase are activated by this thioredoxin while glyceraldehyde-3-phosphate dehydrogenase (NADP+) is not. Like the thioredoxin first isolated from C. nephridii, this new thioredoxin is not a reducing substrate for the C. nephridii ribonucleotide reductase. The complete primary sequence of this second thioredoxin has been determined. The amino acid sequence shows a high degree of similarity with other thioredoxins. Surprisingly, in contrast to the other sequences, this new thioredoxin contains the tetrapeptide -Cys-Ala-Pro-Cys- at the active site. With the exception of the T4 thioredoxin, this is the first example of a thioredoxin that does not have the sequence -Cys-Gly-Pro-Cys-. Our results suggest that, like plant cells, bacterial cells may utilize more than one thioredoxin.  相似文献   

8.
We have demonstrated that calf liver protein disulfide-isomerase (Mr 57,000) is a substrate for calf thymus thioredoxin reductase and catalyzes NADPH-dependent insulin disulfide reduction. This reaction can be used as a simple assay for protein disulfide-isomerase during purification in place of the classical method of reactivation of incorrectly oxidized ribonuclease A. Protein disulfide-isomerase contains two redox-active disulfides/molecule which were reduced by NADPH and calf thioredoxin reductase (Km approximately 35 microM). The isomerase was a poor substrate for NADPH and Escherichia coli thioredoxin reductase, but the addition of E. coli thioredoxin resulted in rapid reduction of two disulfides/molecule. Tryptophan fluorescence spectra were shown to monitor the redox state of protein disulfide-isomerase. Fluorescence measurements demonstrated that thioredoxin--(SH)2 reduced the disulfides of the isomerase and allowed the kinetics of the reaction to be followed; the reaction was also catalyzed by calf thioredoxin reductase. Equilibrium measurements showed that the apparent redox potential of the active site disulfide/dithiols of the thioredoxin domains of protein disulfide-isomerase was about 30 mV higher than the disulfide/dithiol of E. coli thioredoxin. Consistent with this, experiments using dithiothreitol or NADPH and thioredoxin reductase-dependent reduction and precipitation of insulin demonstrated differences between protein disulfide-isomerase and thioredoxin, thioredoxin being a better disulfide reductase but less efficient isomerase. Protein disulfide-isomerase is thus a high molecular weight member of the thioredoxin system, able to interact with both mammalian NADPH-thioredoxin reductase and reduced thioredoxin. This may be important for nascent protein disulfide formation and other thiol-dependent redox reactions in cells.  相似文献   

9.
NrdH-redoxin is a representative of a class of small redox proteins that contain a conserved CXXC motif and are characterized by a glutaredoxin-like amino acid sequence and thioredoxin-like activity profile. The crystal structure of recombinant Escherichia coli NrdH-redoxin in the oxidized state has been determined at 1.7 A resolution by multiwavelength anomalous diffraction. NrdH-redoxin belongs to the thioredoxin superfamily and is structurally most similar to E. coli glutaredoxin 3 and phage T4 glutaredoxin. The angle between the C-terminal helix alpha3 and strand beta4, which differs between thioredoxin and glutaredoxin, has an intermediate value in NrdH-redoxin. The orientation of this helix is to a large extent determined by an extended hydrogen-bond network involving the highly conserved sequence motif (61)WSGFRP(D/E)(67), which is unique to this subclass of the thioredoxin superfamily. Residues that bind glutathione in glutaredoxins are in general not conserved in NrdH-redoxin, and no glutathione-binding cleft is present. Instead, NrdH-redoxin contains a wide hydrophobic pocket at the surface, similar to thioredoxin. Modeling studies suggest that NrdH-redoxin can interact with E. coli thioredoxin reductase at this pocket and also via a loop that is complementary to a crevice in the reductase in a similar manner as observed in the E. coli thioredoxin-thioredoxin reductase complex.  相似文献   

10.
Mitochondrial thioredoxin reductase was purified from bovine adrenal cortex. The enzyme is a first protein component in the mitochondrial thioredoxin-dependent peroxide reductase system. The purified reductase exhibited an apparent molecular mass of 56 kDa on SDS/PAGE, whereas the native protein was about 100 kDa, suggesting a homodimeric structure. It catalysed NADPH-dependent reduction of 5, 5'dithiobis(2-nitrobenzoic acid) and thioredoxins from various origins but not glutathione, oxidized dithiothreitol, DL-alpha-lipoic acid, or insulin. Amino acid and nucleotide sequence analyses revealed that it had a presequence composed of 21 amino acids which had features characteristic of a mitochondrial targeting signal. The amino acid sequence of the mature protein was similar to that of bovine cytosolic thioredoxin reductase (57%) and of human glutathione reductase (34%) and less similar to that of Escherichia coli (19%) or yeast (17%) enzymes. Human and bovine cytosolic thioredoxin reductase were recently identified to contain selenocysteine (Sec) as one of their amino acid constituents. We also identified Sec in the C-terminal region of mitochondrial (mt)-thioredoxin reductase by means of MS and amino acid sequence analyses of the C-terminal fragment. The four-amino acid motif, Gly-Cys-Sec-Gly, which is conserved among all Sec-containing thioredoxin reductases, probably functions as the third redox centre of the enzyme, as the mitochondrial reductase was inhibited by 1-chloro-2,4-dinitrobenzene, which was reported to modify Sec and Cys covalently. It is known that mammalian thioredoxin reductase is different from bacterial or yeast enzyme in, for example, their subunit molecular masses and domain structures. These two different types of enzymes with similar activity are suggested to have evolved convergently. Our data clearly show that mitochondria, which might have originated from symbiotic prokaryotes, contain thioredoxin reductase similar to the cytosolic enzyme and different from the bacterial one.  相似文献   

11.
Tsang ML 《Plant physiology》1981,68(5):1098-1104
Using the thioredoxin/glutaredoxin-dependent adenosine 3'-phosphate 5'-phosphosulfate reductase coupled assay system, the Chlorella thioredoxin/glutaredoxin system has been partially purified and characterized. A NADPH-thioredoxin reductase and two thioredoxin/glutaredoxin activities, designated as Chlorella thioredoxin/glutaredoxin protein I and II (CPI and CPII), were found in crude extracts of Chlorella. Similar to their counterparts from Escherichia coli, both CPI and CPII are heat-stable low molecular proteins of approximately 14,000. While CPI (but not CPII) is a substrate for its homologous NADPH-thioredoxin reductase as well as for E. coli NADPH-thioredoxin reductase, CPII is better than CPI as a substrate for reduction by the glutathione system. Based on these properties, CPI and CPII may be classified as Chlorella thioredoxin and Chlorella glutaredoxin, respectively. The Chlorella NADPH-thioredoxin reductase (M(r) = 72,000, with two 36,000-dalton subunits) resembles E. coli-thioredoxin reductase in size. Besides Chlorella thioredoxin, the Chlorella thioredoxin reductase will also use E. coli thioredoxin, but not glutaredoxin, as a substrate. Although a thioredoxin-like protein has been implicated in higher plant light-dependent sulfate reaction, neither Chlorella thioredoxin nor glutaredoxin can stimulate the thiol-dependent adenosine 5'-phosphosulfate-sulfotransferase reaction. Furthermore, Chlorella thioredoxin and glutaredoxin, in conjunction with an appropriate reductase system, cannot replace the thiol requirement of Chlorella adenosine 5'-phosphosulfate-sulfotransferase. The exact physiological roles and subcellular localization of the Chlorella thioredoxin and glutaredoxin systems remain to be determined.  相似文献   

12.
I Slaby  A Holmgren 《Biochemistry》1979,18(25):5584-5591
The physicochemical and catalytic properties of thioredoxin-T' are described. This complemented protein structure consists of a 1:1 complex between the inactive fragments thioredoxin-T-(1--73) and thioredoxin T-(74--108). These are generated by selective trypsin cleavage at Arg-73 in lysine-modified and denatured Escherichia coli thioredoxin. Thioredoxin-T' was a slowly formed but stable complex with an apparent KD below 10(-8) M. The tryptophan fluorescence spectrum and the CD spectrum were very similar to those of native thioredoxin; some conformational differences were detected by gel chromatography and radioimmunoassay. Thioredoxin-T'-S2 was a substrate for NADPH and thioredoxin reductase and had 1--2% of the activity of native thioredoxin. This low relative activity was the result of a major increase in the Km value. Thioredoxin-(SH)2 was a hydrogen donor for E. coli ribonucleotide reductase with about 3% relative activity. These results for thioredoxin-T' are correlated with the known three-dimensional structure of thioredoxin. The microenvironment around Arg-73 that is close to the active disulfide appears to be of critical importance for the interactions of thioredoxin with thioredoxin reductase and ribonucleotide reductase.  相似文献   

13.
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.  相似文献   

14.
A new over-expression system has been set up for Escherichia coli thioredoxin, yielding 55 mg purified protein/10 g fresh cells. This system has been used to produce thioredoxin modified by site-directed mutagenesis. Taking advantage of the structural and enzymatic similarity between E. coli and spinach m-type thioredoxin, Asp61 of E. coli thioredoxin has been changed into Asn in order to investigate the impact of the suppression of a charged residue on the interaction of thioredoxin with target enzymes. The modification did not significantly alter the structure of the protein. Neither the rate of reduction of insulin and 5,5'-dithio-bis(2-nitrobenzoic acid) by the reduced thioredoxin, nor the reduction by NADPH-dependent thioredoxin reductase, have been modified. The major effect of the mutation was observed for chloroplast enzyme activation with thioredoxin reduced by dithiothreitol and with thioredoxin reduced by ferredoxin-dependent thioredoxin reductase in a light-activation reconstituted chloroplast system. The substitution of the negatively charged Asp61 by the neutral Asn led to an increase in the efficiency of spinach fructose-1,6-bisphosphatase activation by the dithiothreitol-reduced thioredoxin, and to an increase in both spinach fructose-1,6-bisphosphatase and corn NADP-dependent malate dehydrogenase activities in the light-activation system. This suggests that the suppression of the negative charge improves the reactivity of thioredoxin with chloroplast enzymes such as fructose-1,6-bisphosphatase and ferredoxin-dependent thioredoxin reductase.  相似文献   

15.
Trypanosomes and Leishmania, the causative agents of several tropical diseases, lack the glutathione/glutathione reductase system but have trypanothione/trypanothione reductase instead. The uniqueness of this thiol metabolism and the failure to detect thioredoxin reductases in these parasites have led to the suggestion that these protozoa lack a thioredoxin system. As presented here, this is not the case. A gene encoding thioredoxin has been cloned from Trypanosoma brucei, the causative agent of African sleeping sickness. The single copy gene, which encodes a protein of 107 amino acid residues, is expressed in all developmental stages of the parasite. The deduced protein sequence is 56% identical with a putative thioredoxin revealed by the genome project of Leishmania major. The relationship to other thioredoxins is low. T. brucei thioredoxin is unusual in having a calculated pI value of 8.5. The gene has been overexpressed in Escherichia coli. The recombinant protein is a substrate of human thioredoxin reductase with a K(m) value of 6 microM but is not reduced by trypanothione reductase. T. brucei thioredoxin catalyzes the reduction of insulin by dithioerythritol, and functions as an electron donor for T. brucei ribonucleotide reductase. The parasite protein is the first classical thioredoxin of the order Kinetoplastida characterized so far.  相似文献   

16.
Two sequences with homology to a thioredoxin oligonucleotide probe were detected by Southern blot analysis of Anabaena sp. strain PCC 7120 genomic DNA. One of the sequences was shown to code for a protein with 37% amino acid identity to thioredoxins from Escherichia coli and Anabaena sp. strain PCC 7119. This is in contrast to the usual 50% homology observed among most procaryotic thioredoxins. One gene was identified in a library and was subcloned into a pUC vector and used to transform E. coli strains lacking functional thioredoxin. The Anabaena strain 7120 thioredoxin gene did not complement the trxA mutation in E. coli. Transformed cells were not able to use methionine sulfoxide as a methionine source or support replication of T7 bacteriophage or the filamentous viruses M13 and f1. Sequence analysis of a 720-base-pair TaqI fragment indicated an open reading frame of 115 amino acids. The Anabaena strain 7120 thioredoxin gene was expressed in E. coli, and the protein was purified by assaying for protein disulfide reductase activity, using insulin as a substrate. The Anabaena strain 7120 thioredoxin exhibited the properties of a conventional thioredoxin. It is a small heat-stable redox protein and an efficient protein disulfide reductase. It is not a substrate for E. coli thioredoxin reductase. Chemically reduced Anabaena strain 7120 thioredoxin was able to serve as reducing agent for both E. coli and Anabaena strain 7119 ribonucleotide reductases, although with less efficiency than the homologous counterparts. The Anabaena strain 7120 thioredoxin cross-reacted with polyclonal antibodies to Anabaena strain 7119 thioredoxin. However, this unusual thioredoxin was not detected in extracts of Anabaena strain 7120, and its physiological function is unknown.  相似文献   

17.
The reactivity of human thioredoxin (HTR) was tested in several reactions. HTR was as efficient as E. coli or plant and algal thioredoxins when assayed with E. coli ribonucleotide reductase or for the reduction of insulin. On the other hand, HTR was poorly reduced by NADPH and the E. coli flavoenzyme NADPH thioredoxin reductase as monitored in the DTNB reduction test. When reduced with dithiothreitol (DTT), HTR was much less efficient than thioredoxin m and thioredoxin f, the respective specific thioredoxins for the chloroplast enzymes NADP-malate dehydrogenase (NADP-MDH) and fructose 1,6 bisphosphatase (FBPase). Finally, HTR could be used in the photoactivation of NADP-MDH although less efficiently than thioredoxin m, proving nevertheless that it can be reduced by the iron sulfur enzyme ferredoxin thioredoxin reductase in the presence of photoreduced ferredoxin. Based on sequence comparisons, it was expected that HTR would display a reactivity similar to chloroplast thioredoxin f rather than to thioredoxin m. However the observed behavior of FTR did not exactly fit this prediction. The results are discussed in relation to the structural data available for the proteins.  相似文献   

18.
Thioredoxin reductases purified from Escherichia coli from human metastatic melanoma tissue and from human keratinocytes are subject to allosteric inhibition by calcium. 45Calcium has been used to show that this enzyme contains a single binding site. Bound calcium does not exchange from thioredoxin reductase upon dialysis for 48 hours or upon exposure to 10(-3) M EGTA. An intelligenetics computer analysis yielded a single EF-hands calcium binding site on E. coli thioredoxin reductase with homology to the first EF-hands site on calmodulin. Calcium exchange from the enzyme requires the addition of the natural electron acceptor oxidized thioredoxin which causes a concentration dependent slow exchange. Due to the large conformational change caused by calcium binding to thioredoxin reductase it has been possible to separate Calcium-free and Calcium-bound enzyme by FPLC chromatography. Human keratinocytes contain 5% thioredoxin reductase in their acidic protein cytosol fraction. The influence of extracellular calcium concentration on the intracellular equilibrium between calcium bound versus calcium free thioredoxin reductase has been assessed. This equilibrium was shown to determine the redox status of keratinocytes via the reduction of thioredoxin. Our results provide the first evidence for calcium dependent regulation of redox conditions in the human epidermis.  相似文献   

19.
This paper reports the purification and the properties of a thioredoxin from the fungus Aspergillus nidulans. This thioredoxin is an acidic protein which exhibits an unusual fluorescence emission spectrum, characterized by a high contribution of tyrosine residues. Thioredoxin from A. nidulans cannot serve as a substrate for Escherichia coli thioredoxin reductase. Corn NADP-malate dehydrogenase is activated by this thioredoxin in the presence of dithiothreitol, while fructose-1,6-bisphosphatase is not. The amino acid sequence of Aspergillus thioredoxin was determined by automated Edman degradation after cleavage with trypsin, SV8 protease, chymotrypsin and cyanogen bromide. The masses of tryptic peptides were verified by plasma-desorption mass spectrometry. The mass of the protein was determined by electrospray mass spectrometry and shown to be in agreement with the calculated mass derived from the sequence (M(r) = 11,564). Compared to thioredoxins from other sources, the protein from A. nidulans displays a maximal sequence similarity with that from yeast (45%).  相似文献   

20.
Stehr M  Lindqvist Y 《Proteins》2004,55(3):613-619
NrdH-redoxins constitute a family of small redox proteins, which contain a conserved CXXC sequence motif, and are characterized by a glutaredoxin-like amino acid sequence but a thioredoxin-like activity profile. Here we report the structure of Corynebacterium ammoniagenes NrdH at 2.7 A resolution, determined by molecular replacement using E. coli NrdH as model. The structure is the first example of a domain-swapped dimer from the thioredoxin family. The domain-swapped structure is formed by an inter-chain two-stranded anti-parallel beta-sheet and is stabilized by electrostatic interactions at the dimer interface. Size exclusion chromatography, and MALDI-ESI experiments revealed however, that the protein exists as a monomer in solution. Similar to E. coli NrdH-redoxin and thioredoxin, C. ammoniagenes NrdH-redoxin has a wide hydrophobic pocket at the surface that could be involved in binding to thioredoxin reductase. However, the loop between alpha2 and beta3, which is complementary to a crevice in the reductase in the thioredoxin-thioredoxin reductase complex, is the hinge for formation of the swapped dimer in C. ammoniagenes NrdH-redoxin. C. ammoniagenes NrdH-redoxin has the highly conserved sequence motif W61-S-G-F-R-P-[DE]67 which is unique to the NrdH-redoxins and which determines the orientation of helix alpha3. An extended hydrogen-bond network, similar to that in E. coli NrdH-redoxin, determines the conformation of the loop formed by the conserved motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号