首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Mitochondrial carriers are a large family of proteins that transport specific metabolites across the inner mitochondrial membrane. Sequence and structure analysis has indicated that these transporters have substrate binding sites in a similar location of the central cavity consisting of three major contact points. Here we have characterized mutations of the proposed substrate binding site in the human ornithine carriers ORC1 and ORC2 by carrying out transport assays with a set of different substrates. The different substrate specificities of the two isoforms, which share 87% identical amino acids, were essentially swapped by exchanging a single residue located at position 179 that is arginine in ORC1 and glutamine in ORC2. Altogether the substrate specificity changes demonstrate that Arg-179 and Glu-180 of contact point II bind the C(α) carboxylate and amino group of the substrates, respectively. Residue Glu-77 of contact point I most likely interacts with the terminal amino group of the substrate side chain. Furthermore, it is likely that all three contact points are involved in the substrate-induced conformational changes required for substrate translocation because Arg-179 is probably connected with Arg-275 of contact point III through Trp-224 by cation-π interactions. Mutations at position 179 also affected the turnover number of the ornithine carrier severely, implying that substrate binding to residue 179 is a rate-limiting step of the catalytic transport cycle. Given that Arg-179 is located in the vicinity of the matrix gate, it is concluded that it is a key residue in the opening of the carrier to the matrix side.  相似文献   

2.
In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine.  相似文献   

3.
4.
Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2-5) complex in the nucleus, an ORC(1-5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1-6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2-5) are transported independently to the nucleus where they can either assemble into ORC(1-6) or function individually.  相似文献   

5.
6.
The mitochondrial carriers are a family of transport proteins in the inner membranes of mitochondria. They shuttle substrates, metabolites, and cofactors through this membrane and connect cytoplasm functions with others in the matrix. Glutamate is co-transported with H(+) (or exchanged for OH(-)), but no protein has ever been associated with this activity. Two human expressed sequence tags encode proteins of 323 and 315 amino acids with 63% identity that are related to the aspartate-glutamate carrier, a member of the carrier family. They have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties demonstrate that the two proteins are isoforms of the glutamate/H(+) symporter described in the past in whole mitochondria. Isoform 1 is expressed at higher levels than isoform 2 in all the tissues except in brain, where the two isoforms are expressed at comparable levels. The differences in expression levels and kinetic parameters of the two isoforms suggest that isoform 2 matches the basic requirement of all tissues especially with respect to amino acid degradation, and isoform 1 becomes operative to accommodate higher demands associated with specific metabolic functions such as ureogenesis.  相似文献   

7.
The origin recognition complex (ORC) plays a central role in regulating the initiation of DNA replication in eukaryotes. The level of the ORC1 subunit oscillates throughout the cell cycle, defining an ORC1 cycle. ORC1 accumulates in G1 and is degraded in S phase, although other ORC subunits (ORCs 2-5) remain at almost constant levels. The behavior of ORC components in human cell nuclei with respect to the ORC1 cycle demonstrates that ORCs 2-5 form a complex that is present throughout the cell cycle and that associates with ORC1 when it accumulates in G1 nuclei. ORCs 2-5 are found in both nuclease-insoluble and -soluble fractions. The appearance of nuclease-insoluble ORCs 2-5 parallels the increase in the level of ORC1 associating with nuclease-insoluble, non-chromatin nuclear structures. Thus, ORCs 2-5 are temporally recruited to nuclease-insoluble structures by formation of the ORC1-5 complex. An artificial reduction in the level of ORC1 in human cells by RNA interference results in a shift of ORC2 to the nuclease-soluble fraction, and the association of MCM proteins with chromatin fractions is also blocked by this treatment. These results indicate that ORC1 regulates the status of the ORC complex in human nuclei by tethering ORCs 2-5 to nuclear structures. This dynamic shift is further required for the loading of MCM proteins onto chromatin. Thus, the pre-replication complex in human cells may be regulated by the temporal accumulation of ORC1 in G1 nuclei.  相似文献   

8.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

9.
The genome of Saccharomyces cerevisiae encodes 35 members of a family proteins thattransport metabolites and substrates across the inner membranes of mitochondria. They includethree isoforms of the ADP/ATP translocase and the phosphate and citrate carriers. At the startof our work, the functions of the remaining 30 members of the family were unknown. We areattempting to identify these 30 proteins by overexpression of the proteins in specially selectedhost strains of Escherichia coli that allow the carriers to accumulate at high levels in the formof inclusion bodies. The purified proteins are then reconstituted into proteoliposomes wheretheir transport properties are studied. Thus far, we have identified the dicarboxylate,succinate-fumarate and ornithine carriers. Bacterial overexpression and functional identification, togetherwith characterization of yeast knockout strains, has brought insight into the physiologicalsignificance of these transporters. The yeast dicarboxylate carrier sequence has been used toidentify the orthologous protein in Caenorhabditis elegans and, in turn, this latter sequencehas been used to establish the sequence of the human ortholog.  相似文献   

10.
11.
Arginine and methionine transport by Aspergillus nidulans mycelium was investigated. A single uptake system is responsible for the transport of arginine, lysine and ornithine. Transport is energy-dependent and specific for these basic amino acids. The Km value for arginine is 1 X 10(-5) M, and Vmax is 2-8 nmol/mg dry wt/min; Km for lysine is 8 X 10(-6) M; Kt for lysine as inhibitor of arginine uptake is 12 muM, and Ki for ornithine is mM. On minimal medium, methionine is transported with a Km of 0-I mM and Vmax about I nmol/mg dry wt/min; transport is inhibited by azide. Neutral amnio acids such as serine, phenylalanine and leucine are probably transported by the same system, as indicated by their inhibition of methionine uptake and the existence of a mutant specifically impaired in their transport. The recessive mutant nap3, unable to transport neutral amino acids, was isolated as resistant to selenomethionine and p-fluorophenylanine. This mutant has unchanged transport of methionine by general and specific sulphur-regulated permeases.  相似文献   

12.
arg-13为精氨酸代谢途径里的一个渗露型突变。经研究发展了该突变的严格选择方法。该法省略了基本培养基的氮源而加上相似浓度的鸟氨酸与赖氨酸。此法在严紧山梨糖/葡萄糖条件下能强烈抑制arg-13突变株生长,但在斑点试验条件下允许arg-13突变株生长。由于鸟氨酸是通过线粒体合成和由细胞质至线粒体的过膜转运而积累,我们构建了arg-4,arg-13双突变株,其中arg-4阻断了线粒体鸟氨酸合成。在斑点试验条件下,arg-4,arg-13双突变株能利用鸟氨酸作为唯一氮源与精氨酸合成前体,但受赖氨酸与刀豆氨酸强烈抑制。具正常鸟氨酸转运功能的arg-4单突变株在鸟氨酸基本培养基的生长只受微弱的赖氨酸抑制。已有报道arg-13为嘧啶合成代谢途径里pyr-3(CPSACT~ )突变的部分抑制基因,序列分析表明arg-13编码一线粒体转运酶。本文数据提示arg-13在线粒体鸟氨酸过膜转运过程中起主要作用。arg-13突变株仍携带一定的线粒体鸟氨酸转运功能并受碱性氨基酸赖氨酸、刀豆氨酸抑制,可能为另一线粒体碱性氨基酸转运酶介导。  相似文献   

13.
arg—13可能参与鸟氨酸在粗糙脉孢霉线粒体的过膜转运   总被引:2,自引:0,他引:2  
arg-13 is a leaky mutation involved in arginine metabolism. A tight selection is developed using similar amount of lysine and ornithine replacing other nitrogen source in minimal medium. This selection strongly inhibits the growth of arg-13 under stringent sorbose/glucose condition but allows arg-13 to grow under spot test conditions. As ornithine is build up through mitochondrial ornithine biosynthesis and transport from cytoplasm to mitochondria, arg-13 is combined in genetic crosses with arg-4 which blocks mitochondrial ornithine synthesis. Under spot test conditions, double mutant arg-4, arg-13 is able to use ornithine as sole nitrogen source and arginine biosynthesis precursor, but subject to strong lysine and canavanine inhibition. While the usage of ornithine in arg-4 single mutant with intact ornithine transport function is only slightly inhibited by lysine. All available data suggest arg-13 plays a major role in mitochondrial ornithine transport. The strain carrying the mutation at the arg-13 locus allows inefficient mitochondrial ornithine trafficking, possibly mediated by another distinct basic amino acid carrier.  相似文献   

14.
In Escherichia coli K-12, the accumulation of arginine is mediated by two distinct periplasmic binding protein-dependent transport systems, one common to arginine and ornithine (AO system) and one for lysine, arginine, and ornithine (LAO system). Each of these systems includes a specific periplasmic binding protein, the AO-binding protein for the AO system and the LAO-binding protein for the LAO system. The two systems include a common inner membrane transport protein which is able to hydrolyze ATP and also phosphorylate the two periplasmic binding proteins. Previously, a mutant resistant to the toxic effects of canavanine, with low levels of transport activities and reduced levels of phosphorylation of the two periplasmic binding proteins, was isolated and characterized (R. T. F. Celis, J. Biol. Chem. 265:1787–1793, 1990). The gene encoding the transport ATPase enzyme (argK) has been cloned and sequenced. The gene possesses an open reading frame with the capacity to encode 268 amino acids (mass of 29.370 Da). The amino acid sequence of the protein includes two short sequence motifs which constitute a well-defined nucleotide-binding fold (Walker sequences A and B) present in the ATP-binding subunits of many transporters. We report here the isolation of canavanine-sensitive derivatives of the previously characterized mutant. We describe the properties of these suppressor mutations in which the transport of arginine, ornithine, and lysine has been restored. In these mutants, the phosphorylation of the AO- and LAO-binding proteins remains at a low level. This information indicates that whereas hydrolysis of ATP by the transport ATPase is an obligatory requirement for the accumulation of these amino acids in E. coli K-12, the phosphorylation of the periplasmic binding protein is not related to the function of the transport system.  相似文献   

15.
The proteins bound in vivo at the human lamin B2 DNA replication origin and their precise sites of binding were investigated along the cell cycle utilizing two novel procedures based on immunoprecipitation following UV irradiation with a pulsed laser light source. In G(1), the pre-replicative complex contains CDC6, MCM3, ORC1 and ORC2 proteins; of these, the post-replicative complex in S phase contains only ORC2; in M phase none of them are bound. The precise nucleotide of binding was identified for the two ORC and the CDC6 proteins near the start sites for leading-strand synthesis; the transition from the pre- to the post-replicative complex is accompanied by a 17 bp displacement of the ORC2 protein towards the start site.  相似文献   

16.
The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.  相似文献   

17.
The E1 protein is a multifunctional, origin-binding helicase that is essential for replication of papillomaviruses. Recently, bovine papillomavirus E1 was shown to be post-translationally modified by the addition of the SUMO-1 polypeptide. Here we show that the site of sumoylation maps to lysine residue 514. This lysine and the flanking sequences are well conserved in human papillomavirus (HPV) E1 proteins. Both HPV1a and HPV18 E1 proteins are substrates for sumoylation in vitro, which is consistent with this modification being a general property of E1 proteins. Mutations, which impair the sumoylation of bovine papillomavirus E1, prevent normal nuclear accumulation of E1 with a concomitant loss of replication capacity. These results suggest that sumoylation plays a role in nuclear transport and could regulate the E1 replication function by controlling access to the nuclear replication domains.  相似文献   

18.
The origin recognition complex (ORC) is a conserved heterohexamer required for the formation of pre-replication (pre-RC) complexes at origins of DNA replication. Many studies of ORC subunits have been carried out in transformed human cell lines but the properties of ORC in primary cells have not been addressed. Here, we compare the expression levels and chromatin-association of ORC subunits in HeLa cells to the primary human cell line, WI38, and a virally transformed derivative of WI38, VA13. ORC subunits 2 and 4 were highly overexpressed in both HeLa and VA13, whereas ORC1 levels were elevated in VA13 but considerably higher in HeLa cells. Cellular extraction revealed that the proportion of ORC2 and ORC4 subunits bound to chromatin was similar in all three cell lines throughout the cell-cycle. In contrast, very little ORC1 was associated with chromatin after extraction of primary WI38 cells, whereas the majority of overexpressed ORC1 in both HeLa and VA13 co-fractionated with chromatin throughout the cell-cycle. Although none of the cell lines displayed significant changes in the levels or chromatin-association of ORC during the cell-cycle, the chromatin-associated fraction of ORC1 displayed an increase in apparent molecular weight during S-phase. Similar experiments comparing immortalized CHO cells to an isogenic virally transformed derivative revealed no changes in levels of ORC subunits but an increase in the proportion of all three ORC subunits associated with chromatin. These results demonstrate a complex influence of cellular immortalization and transformation properties on the expression and regulation of ORC subunits. These results extend the potential link between cancer and deregulation of pre-RC proteins, and underscore the importance of considering the transformation status of cell lines when working with these proteins.  相似文献   

19.
The nuclear genome of Saccharomyces cerevisiae encodes 35 members of a family of membrane proteins. Known members transport substrates and products across the inner membranes of mitochondria. We have localized two hitherto unidentified family members, Odc1p and Odc2p, to the inner membranes of mitochondria. They are isoforms with 61% sequence identity, and we have shown in reconstituted liposomes that they transport the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a strict counter exchange mechanism. Intraliposomal adipate and glutarate and to a lesser extent malate and citrate supported [14C]oxoglutarate uptake. The expression of Odc1p, the more abundant isoform, made in the presence of nonfermentable carbon sources, is repressed by glucose. The main physiological roles of Odc1p and Odc2p are probably to supply 2-oxoadipate and 2-oxoglutarate from the mitochondrial matrix to the cytosol where they are used in the biosynthesis of lysine and glutamate, respectively, and in lysine catabolism.  相似文献   

20.
Rickettsia prowazeki possesses an active transport system for lysine with a Kt of influx of 1 muM. Extraction and chromatographic analysis of the accumulated labeled material show the material to be lysine rather than a derivative. This intracellular lysine pool can be exchanged with external unlabeled substrates for at least 10 min; The lysine analogues L-aminoethyl cysteine, N-methyl lysine, hydroxylysine, and D-lysine competitively inhibit uptake of L-lysine, but cadaverine, diaminopimelate, arginine, ornithine, and epsilon-aminocaproate do not. Accumulation of lysine can be inhibited by the energy poisons potassium cyanide, triphenylmethyl phosphonium bromide, and 2,4-dinitrophenol. The effect of potassium cyanide, but not 2,4-dinitrophenol or triphenylmethyl phosphonium bromide, can be overcome by adenosine 5'-triphosphate. Both energy-dependent influx and energy-independent efflux are inhibited by the sulfhydryl reagents N-ethyl maleimide and p-chloromercuriphenyl sulfonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号