首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Likelihood of a pandemic emergence in the near future was discussed. The majority of science-based arguments point to anthroponotic nature of future pandemic, which can be caused by return to circulation of H2N2 virus silently persisting in population from 1968 or in animals as part of various reassortants. Outbreaks of zoonotic (avian) influenza in humans emerged recently reflect natural epidemic manifestations of epizootic process which had become more intense due to specific social and natural conditions in densely populated countries of South-East Asia. This suggestion is confirmed by predominance of poultry workers between patients with avian influenza. Likelihood of pandemic influenza A virus emergence as a result of reassortation between human and avian influenza viruses is not high. Similarity of antigenic structure of human and animal influenza viruses points to their common roots, but yet humans remain the biological dead-end for reassortant viruses. Rationale for epidemiologic surveillance as well as for prophylactic and antiepidemic measures with respect to influenza A is obvious basing on anthroponotic nature of its causative agents. Although the likelihood of adaptation of animal influenza viruses to human organism and formation of anthroponotic mechanisms of transmission is small, epidemiological and, especially, epizootic surveillance for zoonotic influenza are essential.  相似文献   

2.
R Fang  W Min Jou  D Huylebroeck  R Devos  W Fiers 《Cell》1981,25(2):315-323
We have explored the possibility that an animal viral reservoir contained a direct ancestor gene for the H3 hemagglutinin type present in influenza A viruses in humans since 1968. For this purpose, the duck/Ukraine/1/63 hemagglutinin gene was cloned and sequenced. From the comparison of its complete primary structure with that of several human H3 hemagglutinins as well as those of an H2 and an H7 hemagglutinin, we conclude that the duck/Ukraine/63 hemagglutinin sequence fully corroborates its previous identification by immunological and other methods as belonging to the H3 subtype. Moreover, the duck/Ukraine/63 amino acid sequence is more closely related structurally and presumably antigenically to the human Aichi/68 hemagglutinin, which formed the beginning of the H3N2 pandemic in humans, than to that of Victoria/75, which has undergone an additional 7 year drift period in humans. This observation could best be explained by a common ancestor hemagglutinin gene for duck/Ukraine/63 and human Aichi/68. On the basis of silent, accumulated base changes, we estimate that the strain carrying this postulated common progenitor hemagglutinin gene was circulating in the period 1949–1953 in the animal reservoir. This relatively recent divergence, as well as the closer kinship between the duck/Ukraine/63 and the human Aichi/68 hemagglutinin, as compared with the later Victoria/75, strongly suggests that the influenza A virus of the H3N2 subtype circulating in the human population since 1968 has derived its hemagglutinin gene from a strain in the animal reservoir. Undoubtedly, this occurred by reassortment between previously present human H2N2 virus and this animal strain. These results provide support at the molecular level for the general idea that the wide variety of influenza viruses known to be present in animals can serve as a gene reservoir for human influenza A viruses.  相似文献   

3.
Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.  相似文献   

4.
The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)‐binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.  相似文献   

5.
Influenza viruses: transmission between species   总被引:3,自引:0,他引:3  
The only direct evidence for transmission of influenza viruses between species comes from studies on swine influenza viruses. Antigenically and genetically identical Hsw1N1 influenza viruses were isolated from pigs and man on the same farm in Wisconsin, U.S.A. The isolation of H3N2 influenza viruses from a wide range of lower animals and birds suggests that influenza viruses of man can spread to the lower orders. Under some conditions the H3N2 viruses can persist for a number of years in some species. The isolation, from aquatic birds, of a large number of influenza A viruses that possess surface proteins antigenically similar to the viruses isolated from man, pigs and horses provides indirect evidence for inter-species transmission. There is now a considerable body of evidence which suggests that influenza viruses of lower animals and birds may play a role in the origin of some of the pandemic strains of influenza A viruses. There is no direct evidence that the influenza viruses in aquatic birds are transmitted to man, but they may serve as a genetic pool from which some genes may be introduced into humans by recombination. Preliminary evidence suggests that the molecular basis of host range and virulence may be related to the RNA segments coding for one of the polymerase proteins (P3) and for the nucleoprotein (NP).  相似文献   

6.
Emergence of influenza A viruses.   总被引:9,自引:0,他引:9  
Pandemic influenza in humans is a zoonotic disease caused by the transfer of influenza A viruses or virus gene segments from animal reservoirs. Influenza A viruses have been isolated from avian and mammalian hosts, although the primary reservoirs are the aquatic bird populations of the world. In the aquatic birds, influenza is asymptomatic, and the viruses are in evolutionary stasis. The aquatic bird viruses do not replicate well in humans, and these viruses need to reassort or adapt in an intermediate host before they emerge in human populations. Pigs can serve as a host for avian and human viruses and are logical candidates for the role of intermediate host. The transmission of avian H5N1 and H9N2 viruses directly to humans during the late 1990s showed that land-based poultry also can serve between aquatic birds and humans as intermediate hosts of influenza viruses. That these transmission events took place in Hong Kong and China adds further support to the hypothesis that Asia is an epicentre for influenza and stresses the importance of surveillance of pigs and live-bird markets in this area.  相似文献   

7.
In the history of influenza there are many references, notes and comments about influenza epizootics occurring among various non-human animals, sometimes coinciding with epidemics of influenza in human beings. That the first influenza viruses were recovered from non-human animals is not so surprising, given the current knowledge of the distribution of influenza among animals. Influenza viruses are found in a wide variety of mammalian and avian species. In some species the disease that occurs as a result of the infection mimics the influenza disease of human beings, in other species there are no signs of disease, and in others there is disease specific to a species. It is clear that influenza viruses have a significant impact on the health of several animal species. In recent times it has also become clear that many species of animals are inextricably entwined in the puzzle of influenza viruses and human influenza. Our knowledge in animals has provided both questions and answers about the influenza viruses and their diseases. Certainly our understanding of human influenza has been advanced because of the animals in the influenza world.  相似文献   

8.
ABSTRACT: BACKGROUND: Influenza is one of the oldest and deadliest infectious diseases known to man. Reassorted strains of the virus pose the greatest risk to both human and animal health and have been associated with all pandemics of the past century, with the possible exception of the 1918 pandemic, resulting in tens of millions of deaths. We have developed and tested new computer algorithms, FluShuffle and FluResort, which enable reassorted viruses to be identified by the most rapid and direct means possible. These algorithms enable reassorted influenza, and other, viruses to be rapidly identified to allow prevention strategies and treatments to be more efficiently implemented. RESULTS: The FluShuffle and FluResort algorithms were tested with both experimental and simulated mass spectra of whole virus digests. Flu Shuffle considers different combinations of viral protein identities that match the mass spectral data using a Gibbs sampling algorithm employing a mixed protein Markov chain Monte Carlo (MCMC) method. Flu Resort utilizes those identities to calculate the weighted distance of each across two or more different phylogenetic trees constructed through viral protein sequence alignments. Each weighted mean distance value is normalized by conversion to a Z-score to establish a reassorted strain. CONCLUSIONS: The new Flu Shuffle and Flu Resort algorithms can correctly identify the origins of influenza viral proteins and the number of reassortment events required to produce the strains from the high resolution mass spectral data of whole virus proteolytic digestions. This has been demonstrated in the case of constructed vaccine strains as well as common human seasonal strains of the virus. The algorithms significantly improve the capability of the proteotyping approach to identify reassorted viruses that pose the greatest pandemic risk.  相似文献   

9.
Influenza viruses are common respiratory pathogens in humans and can cause serious infection that leads to the development of pneumonia. Due to their host-range diversity, genetic and antigenic diversity, and potential to reassort genetically in vivo, influenza A viruses are continual sources of novel influenza strains that lead to the emergence of periodic epidemics and outbreaks in humans. Thus, newly emerging viral diseases are always major threats to public health. In March 2009, a novel influenza virus suddenly emerged and caused a worldwide pandemic. The novel pandemic influenza virus was genetically and antigenically distinct from previous seasonal human influenza A/H1N1 viruses; it was identified to have originated from pigs, and further genetic analysis revealed it as a subtype of A/H1N1, thus later called a swine-origin influenza virus A/H1N1. Since the novel virus emerged, epidemiological surveys and research on experimental animal models have been conducted, and characteristics of the novel influenza virus have been determined but the exact mechanisms of pulmonary pathogenesis remain to be elucidated. In this editorial, we summarize and discuss the recent pandemic caused by the novel swine-origin influenza virus A/H1N1 with a focus on the mechanism of pathogenesis to obtain an insight into potential therapeutic strategies.  相似文献   

10.
The 2009 H1N1 influenza pandemic is the first human pandemic in decades and was of swine origin. Although swine are believed to be an intermediate host in the emergence of new human influenza viruses, there is still little known about the host barriers that keep swine influenza viruses from entering the human population. We surveyed swine progenitors and human viruses from the 2009 pandemic and measured the activities of the hemagglutinin (HA) and neuraminidase (NA), which are the two viral surface proteins that interact with host glycan receptors. A functional balance of these two activities (HA binding and NA cleavage) is found in human viruses but not in the swine progenitors. The human 2009 H1N1 pandemic virus exhibited both low HA avidity for glycan receptors as a result of mutations near the receptor binding site and weak NA enzymatic activity. Thus, a functional match between the hemagglutinin and neuraminidase appears to be necessary for efficient transmission between humans and may be an indicator of the pandemic potential of zoonotic viruses.  相似文献   

11.
A survey of over 600 'normal' sera from 14 animal species by immunoprecipitin tests in cellulose acetate using viron antigens revealed a high incidence of precipitating activity against a broad range of influenza A virus strains, particularly A2hHong Kong/1/68 and /PR8. However, serum treatments trypsin-heat-periodate, NaIO4, V. cholerae receptor-destroying enzyme (RDE), or kaolin eliminated most precipitating activity, which suggests that it was due to "non-specific" inhibitors of influenze viruses. A resistant minority could not be identified as inhibitor or antibody on this basis. Precipitation of the influenza A major type-specific antigen in virus-soluble antigens by human 7S gamma globulin antibody (IgG), demonstrated to be specific for influenza virus, was established as a reference reaction to identify similar immunoprecipitin reactions occurring between virus-soluble antigens and normal or immune sera. Complement fixation tests provided supplementary evidence for the presence of influenza A antibodies in these sera. Influenza A antibodies were found in only a few sera of six animal species: cat, dog, rabbit, goat, chipmunk, and sheep. Thus the animal species examined in the Ottawa area have not revealed an unequivocal reservoir for human influenza A viruses.  相似文献   

12.
Studies of influenza transmission are necessary to predict the pandemic potential of emerging influenza viruses. Currently, both ferrets and guinea pigs are used in such studies, but these species are distantly related to humans. Nonhuman primates (NHP) share a close phylogenetic relationship with humans and may provide an enhanced means to model the virological and immunological events in influenza virus transmission. Here, for the first time, it was demonstrated that a human influenza virus isolate can productively infect and be transmitted between common marmosets (Callithrix jacchus), a New World monkey species. We inoculated four marmosets with the 2009 pandemic virus A/California/07/2009 (H1N1pdm) and housed each together with a naïve cage mate. We collected bronchoalveolar lavage and nasal wash samples from all animals at regular intervals for three weeks post-inoculation to track virus replication and sequence evolution. The unadapted 2009 H1N1pdm virus replicated to high titers in all four index animals by 1 day post-infection. Infected animals seroconverted and presented human-like symptoms including sneezing, nasal discharge, labored breathing, and lung damage. Transmission occurred in one cohabitating pair. Deep sequencing detected relatively few genetic changes in H1N1pdm viruses replicating in any infected animal. Together our data suggest that human H1N1pdm viruses require little adaptation to replicate and cause disease in marmosets, and that these viruses can be transmitted between animals. Marmosets may therefore be a viable model for studying influenza virus transmission.  相似文献   

13.
The intricate causal relationships between disease in man and disease in animals first began to be elucidated in the mid-19th century. Although the connections between animal and human disease are now generally understood, individuals as well as societies remain slow to act on this knowledge. This paper examines the gradual recognition of these disease connections and explores the parallel theme of man's reluctance to appreciate the implications of these connections. It identifies factors that have inhibited the realization of the links between disease in man and animals, and discusses several milestones in the scientific elucidation of these links. Beginning with emerging concerns over the relationship between bovine and human tuberculosis in the 1860s, it follows the discovery of insect vectors, animal reservoirs, and the links between animals, influenza, and man. Despite warnings of the potential significance for human disease of patterns of changes in the relationship with animals and the natural world, scientists have continued to treat human and animal health as largely independent disciplines, while historians too have neglected this important aspect of human disease.  相似文献   

14.
The main nucleocapsid protein (NP) of human epidemic viruses was found to be cleaved via NP56----HP53 mol. wt. reduction in infected cells, while the NP of animal influenza viruses was refractory to analogous intracellular modification. Like animal influenza viruses, the strain A/Baku/799/82(H1N3) isolated from a sick child has been observed to exhibit the intracellular resistance of NP to intracellular proteolysis. The similar NP resistance has been revealed for A/New Jersey/8/76(H1N1) and A/seal/Massachusetts/81 (H7N7) viruses, which are able to induce only a sporadic human influenza viral infection. Thus, the results reveal a correlation between the viral strains epidemicity and intracellular cleavability of their NPs. The influenza viral strains epidemic for humans are characterized by cleavable NP, whereas the strains, which are known to induce the sporadic influenza human infection are found to exhibit the resistance of NP to intracellular proteolysis. It is reasonable to consider the phenomenon of NP56----NP53 proteolytic modification as a sign of viral strain epidemicity for humans.  相似文献   

15.
Drivers and risk factors for Influenza A virus transmission across species barriers are poorly understood, despite the ever present threat to human and animal health potentially on a pandemic scale. Here we review the published evidence for epidemiological risk factors associated with influenza viruses transmitting between animal species and from animals to humans. A total of 39 papers were found with evidence of epidemiological risk factors for influenza virus transmission from animals to humans; 18 of which had some statistical measure associated with the transmission of a virus. Circumstantial or observational evidence of risk factors for transmission between animal species was found in 21 papers, including proximity to infected animals, ingestion of infected material and potential association with a species known to carry influenza virus. Only three publications were found which presented a statistical measure of an epidemiological risk factor for the transmission of influenza between animal species. This review has identified a significant gap in knowledge regarding epidemiological risk factors for the transmission of influenza viruses between animal species.  相似文献   

16.
流感病毒基因的密码子偏好性及聚类分析   总被引:1,自引:0,他引:1  
徐利娟  钟金城  陈智华  穆松 《生物信息学》2010,8(2):175-179,186
流行性感冒病毒是一种造成人类及动物患流行性感冒的RNA病毒,它造成急性上呼吸道感染,并由空气迅速传播,在世界各地常有周期性的大流行。根据该病毒的基因组CDS序列,探讨了基因组序列密码子的使用模式和特性,并进行了病毒间的聚类分析。结果表明:流感病毒的G+C含量均低于A+U含量,偏向使用以A、U结尾的密码子的程度比使用以G、C结尾的较高,CUG、UCA、AGU、AGC、AGA、AGG、GUG、CCA、ACA、GGA、GCA、AUU、UGA、CAU、CAA、AAU、AAA、GAA等18个密码子为流感病毒共有的偏好性密码子,且以A结尾的居多,尤其偏爱AGA、GGA。聚类结果表明首先亚洲流感病毒H2N2和香港流感病毒H2N2聚为一类,亚洲流感病毒H1N1和俄罗斯流感病毒H1N1聚为一类,1997年和2003年~2004年发生的人禽流感聚为一类,说明它们的密码子使用的偏好性相似;而2009年爆发的甲型H1N1流感和任何一个流感的距离都比较远,说明甲型H1N1流感病毒是一种新型的病毒,不同于以往任何一种流感病毒。  相似文献   

17.
The emergence of the 2009 H1N1 virus pandemic was unexpected, since it had been predicted that the next pandemic would be caused by subtype H5N1. We also had to learn that a pandemic does not necessarily require the introduction of a new virus subtype into the human population, but that it may result from antigenic shift within the same subtype. The new variant was derived from human and animal viruses by genetic reassortment in the pig, supporting the concept that this animal is the mixing vessel for the generation of new human influenza viruses. Although it is generally believed that the 2009 outbreak was mild, there have been severe cases particularly among the young and the middle-aged. Pathogenicity and host range are determined to a large extent by the polymerase, the haemagglutinin and the NS1 protein of influenza A viruses. There is evidence that mutations of these proteins may change the pathogenicity of the new virus.  相似文献   

18.
Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.  相似文献   

19.
Pandemic influenza has posed an increasing threat to public health worldwide in the last decade. In the 20th century, three human pandemic influenza outbreaks occurred in 1918, 1957 and 1968, causing significant mortality. A number of hypotheses have been proposed for the emergence and development of pandemic viruses, including direct introduction into humans from an avian origin and reassortment between avian and previously circulating human viruses, either directly in humans or via an intermediate mammalian host. However, the evolutionary history of the pandemic viruses has been controversial, largely due to the lack of background genetic information and rigorous phylogenetic analyses. The pandemic that emerged in early April 2009 in North America provides a unique opportunity to investigate its emergence and development both in human and animal aspects. Recent genetic analyses of data accumulated through long-term influenza surveillance provided insights into the emergence of this novel pandemic virus. In this review, we summarise the recent literature that describes the evolutionary pathway of the pandemic viruses. We also discuss the implications of these findings on the early detection and control of future pandemics.  相似文献   

20.
Prediction of tyrosine sulfation sites in animal viruses   总被引:1,自引:0,他引:1  
Post-translational modification of proteins by tyrosine sulfation enhances the affinity of extracellular ligand-receptor interactions important in the immune response and other biological processes in animals. For example, sulfated tyrosines in polyomavirus and varicella-zoster virus may help modulate host cell recognition and facilitate viral attachment and entry. Using a Position-Specific-Scoring-Matrix with an accuracy of 96.43%, we analyzed the possibility of tyrosine sulfation in all 1517 animal viruses available in the Swiss-Prot database. From a total of 97,729 tyrosines, we predicted 5091 sulfated tyrosine sites from 1024 viruses. Our site predictions in hemagglutinin of influenza A, VP4 of rotavirus, and US28 of cytomegalovirus strongly suggest an important link between tyrosine sulfation and viral disease mechanisms. In each of these three viral proteins, we observed highly conserved amino acid sequences surrounding predicted sulfated tyrosine sites. Tyrosine sulfation appears to be much more common in animal viruses than is currently recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号