首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The succession in time and space of specific germ cell associations, denoted as spermatogenic stages, is a typical feature of mammalian spermatogenesis. The arrangement of these stages is either single stage (one spermatogenic stage per tubular cross-section) or multistage (more than one spermatogenic stage per tubular cross-section). It has been proposed that the single-stage versus multistage arrangement is related to spermatogenic efficiency and that the multistage arrangement is typical for hominids. In the present work, the arrangement of spermatogenic stages and the spermatogenic efficiency of 17 primate species, comprising Strepsirrhini (Prosimians: Lemuriformes, Lorisiformes), Platyrrhini (New World primates), Catarrhini (Old World primates), and Hominoidea (great apes and humans), were analyzed comparatively by quantitative histological and flow cytometric means. We found a predominant single-stage tubular organization in the Strepsirrhini, indicating that the single-stage form represents the ancestral state. The highest degree of multistage complexity was found in Hominoidea (except orangutan) and in Platyrrhini, but not in Catarrhini. Hence, no direct relationship between single-stage/multistage tubular topography and phylogeny could be established across primates. In fact, the tubule arrangement seen in Platyrrhini and Catarrhini primates is the reverse of what might be expected from phylogeny. Interestingly, spermatogenic efficiency was similar in all species. We found no correlation between single-stage/multistage arrangement and spermatogenic efficiency or mating system. We speculate that the presence of a single-stage/multistage organization might simply reflect germ cell clonal size. Our findings further indicate that sperm competition in primates is not reflected at the level of testicular function.  相似文献   

2.
The luteinizing hormone receptor (LHR) plays an essential role as a mediator of LH and CG action during embryonic sexual differentiation and in gametogenesis. In a hypogonadal male patient, we recently demonstrated that a genomic deletion of exon 10, located in the hinge region of the extracellular domain, results in discrimination of LH and hCG action. In the common marmoset (Calltithrix jacchus), exon 10 of the LHR is naturally missing at the mRNA level. In order to investigate whether this is an isolated species-specific phenomenon, we performed a phylogenetic screening, searching for the presence of LHR exon 10 mRNA in a number of primate species representative for the major lineages of primate evolution. The expressed LHR region encompassing exon 10 was amplified from testicular tissue by RT-PCR, cloned, and sequenced. In addition, we performed Southern blot analysis of the LHR of selected New World and Old World primates. The results revealed that exon 10 mRNA is lacking in the complete New World monkey (Platyrrhini) lineage but is present in both more primitive and more advanced primates. However, exon 10 seems to be present at the genomic level, arguing for a splicing failure possibly due to a genomic mutation or the lack of appropriate splicing factors. Considering that, in the human, LH is far less active than hCG on the LHR lacking exon 10, we addressed the question whether the existence of such a receptor has any consequences on the dual hormone LH/CG system present in Platyrrhini. Using primers specific for the known marmoset CG beta cDNA, we amplified the CG beta subunit cDNA from male common marmoset pituitaries by RT-PCR, while LH beta could not be amplified, suggesting a possible physiological role of pituitary CG in this species. In conclusion, we demonstrated for the first time that the LH mRNA without exon10 is the natural wild-type LHR in the Platyrrhini lineage. We propose that this LHR represents a new subclass of receptors that should be named LHR type II. In addition, the high expression of CG beta in the marmoset pituitary suggests a physiological role of CG in the reproductive function of these primates beyond pregnancy.  相似文献   

3.
New World primates comprise a diverse group of neotropical mammals that suddenly appeared in the Late Oligocene deposits of South America at around 26 million years ago (MYA). Platyrrhines seem to have separated from Old World anthropoids ca. 35 MYA, and their subsequent diversfication is not well documented in the fossil record. Therefore, molecular clock studies were conducted to unveil the temporal scenario for the evolution of the group. In this study, divergence times of all splits within platyrrhines until the generic level were investigated, using two different gene data sets under relaxed molecular clocks. Special attention was paid to the basal diversification of living platyrrhines and to the basal split of the modern Cebidae family, since these nodes were reported to be phylogenetically difficult to resolve. The results showed that analyses from various genomic regions are similar to estimates obtained by early single-gene studies. Living New World primates are descendants of ancestors that lived in the Early Miocene, at around 20 MYA, and modern Cebidae and Pitheciidae appeared ca. 16.9 and 15.6 MYA, respectively. The last common ancestor of living Atelidae is 12.4 million years old, making this clade the youngest New World primate family; at approximately the same time, modern Callitrichinae was evolving (11.8 MYA). The gap between the Platyrrhini/Catarrhini separation and the last common ancestor of living Platyrrhini may be as big as 20 million years. Paleontological and geoclimatological evidence corroborates that the sudden appearance of modern families may be a consequence of environmental changes during the Miocene.  相似文献   

4.
Spermatogenesis is characterized by the succession in time and space of specific germ cell associations (stages). There can be a single stage (e.g., rodents and some macaques) or more than one stage (e.g., chimpanzee and human) per tubular cross section. We analyzed the organization of the seminiferous epithelium and quantified testicular germ cell production and apoptosis in a New World primate, the common marmoset (Callithrix jacchus). Tubule cross sections contained more than one stage, and the human six-stage system could be applied to marmoset spermatogenesis. Stereological (optical disector) analysis (n = 5) revealed high spermatogenic efficiency during meiosis and no loss of spermatids during spermiogenesis. The conversion of type A to type B spermatogonia was several-fold higher than that reported for other primates. Highest apoptotic rates were found for S-phase cells (20%) and 4C cells (15%) by flow cytometric analysis (n = 6 animals); histological analysis confirmed spermatogonial apoptosis. Haploid germ cell apoptosis was <2%. Marmoset spermatogenesis is very efficient and involves substantial spermatogonial proliferation. The prime determinants of germ cell production in primates appear to be proliferation and survival of spermatogonia rather than the efficiency of meiotic divisions. Based on the organizational similarities, common marmosets could provide a new animal model for experimental studies of human spermatogenesis.  相似文献   

5.
Selection of the species-specific number of follicles that will develop and ovulate during the ovarian cycle can be overridden by increasing the levels of pituitary gonadotropin hormones, FSH and LH. During controlled ovarian stimulation (COS) in nonhuman primates for assisted reproductive technology (ART) protocols, the method of choice (but not the only method) has been the administration of exogenous gonadotropins, either of nonprimate or primate origin. Due to species-specificity of the primate LH (but not FSH) receptor, COS with nonprimate (e.g., PMSG) hormones can be attributed to their FSH activity. Elevated levels of FSH alone will produce large antral follicles containing oocytes capable of fertilization in vitro (IVF). However, there is evidence that LH, probably in lesser amounts, increases the rate of follicular development, reduces heterogeneity of the antral follicle pool, and improves the viability and rate of pre-implantation development of IVF-produced embryos. Since an endogenous LH surge typically does not occur during COS cycles (especially when a GnRH antagonist is added), a large dose of an LH-like hormone (i.e., hCG) may be given to reinitiate meiosis and produce fertilizable oocytes. Alternate approaches using exogenous LH (or FSH), or GnRH agonist to induce an endogenous LH surge, have received lesser attention. Current protocols will routinely yield dozens of large follicles with fertilizable eggs. However, limitations include non/poor-responding animals, heterogeneity of follicles (and presumably oocytes) and subsequent short luteal phases (limiting embryo transfer in COS cycles). However, the most serious limitation to further improvements and expanded use of COS protocols for ART is the lack of availability of nonhuman primate gonadotropins. Human, and even more so, nonprimate gonadotropins are antigenic in monkeys, which limits the number of COS cycles to as few as 1 (PMSG) or 3 (recombinant hCG) protocols in macaques. Production and access to sufficient supplies of nonhuman primate FSH, LH and CG would overcome this major hurdle.  相似文献   

6.
MHC class I cDNA sequences from the most divergent primate group of extant primates compared to human, the suborder Strepsirrhini (prosimians), are described. The sequences are derived from the gray mouse lemur (Microcebus murinus) and the ring-tailed lemur (Lemur catta), which are members of the malagasy Lemuriformes, as well as from the pygmy slow loris (Nycticebus pygmaeus), a prosimian from East Asia. The M. murinus sequences have been analyzed in detail. Analysis of the expression level, G/C content, and synonymous vs. nonsynonymous substitution rates in the peptide-binding region codons suggests that these cDNA clones represent classical class I (class Ia) genes. According to Southern blot analysis, the genome of the gray mouse lemur might contain about 10 class I genes. In gene tree analysis, the strepsirrhine class Ia genes described here cluster significantly separately from the known class I genes of Catarrhini (humans, apes, Old World monkeys) and Platyrrhini (New World monkeys) species, suggesting that the class I loci of Simiiformes arose by gene duplications which occurred after the divergence of prosimians.  相似文献   

7.
Mhc-DRB genes of platyrrhine primates   总被引:3,自引:3,他引:0  
The two infraorders of anthropoid primates, Platyrrhini (New World monkeys) and Catarrhini (Old World monkeys and the hominoids) are estimated to have diverged from a common ancestor 37 million years ago. The major histocompatibility complex class II DRB gene and haplotype polymorphism of the Catarrhini has been characterized in several recent studies. The present study was undertaken to obtain information on the DRB polymorphism of the Platyrrhini. Fifty-five complete exon 2 DRB sequences were obtained from six species of Platyrrhini representing both the Callitrichidae and the Cebidae families. Combined with the results of a parallel contig mapping study, our data indicate that at least three loci (DRB1*03, DRB3, and DRB5) are shared by the Catarrhini and the Platyrrhini. However, the three loci are occupied by functional genes in the former infraorder and mostly by pseudogenes in the latter. Instead of the pseudogenes, the Platyrrhini have evolved a new set of apparently functional genes — DRB11 and DRB*W12 through DRB*W19, which have thus far not been found in the Catarrhini. The DRB*W13, *W14, *W15, *W17, *W18, and *W19 genes seem to be restricted to the Cebidae family, whereas the DRB*W16 locus has so far been documented in the Callitrichidae family only. The DRB alleles of the cotton-top tamarin, and perhaps also those of the common marmoset (both members of the family Callitrichidae), are characterized by low nucleotide diversity, possibly indicating that they diverged from a common ancestral gene relatively recently. Correspondence to: J. Klein.  相似文献   

8.
To investigate the phylogenic aspect of transcortin (corticosteroid-binding globulin, CBG), the immunoreactivity of transcortin with anti-human transcortin antiserum was studied in primates. The anti-human transcortin antibody was recognized by plasma proteins obtained from Catarrhini, taxonomically the most evolved monkey group. The immunoreactivity was not observed in plasma obtained from Platyrrhini and Prosimiae, classified as less evolved monkey groups than Catarrhini. Though comparison of immunoreactivity among different classes of Catarrhini was difficult because of non-parallelism of their displacement curves, displacement of 125I-labelled human transcortin from the antiserum by 1:10 and 1:100 diluted plasma was highest in human followed by Pongidae, Cercopithecoidea. The immunoreactivity of thyroxine-binding globulin (TBG) with anti-human TBG antiserum was also examined. The anti-human TBG antibody was only recognized in plasma from Pan (anthropoid ape) among Pongidae, highly evolved monkeys among Catarrhini. The existence of immunoreactive transcortin and TBG to respective human protein antibody in the highly evolved ape agreed well with the cladogenetic division of primate species delineated by Goodman and Moore (1971). Cortisol-binding activity of transcortin was detected in all monkeys except three, tafted capuchin monkey, night monkey and cotton-headed tamarin, which belong to Platyrrhini. The absence of cortisol-binding activity in these animals might be attributed to high levels of endogenous cortisol and low cortisol-binding capacity of transcortin. It is speculated that the structure of the immunoreactive site in transcortin could be modified by evolution without affecting the biologically important site, the site for cortisol binding.  相似文献   

9.
During the last decades, New World monkey (NWM, Platyrrhini, Anthropoideae) comparative cytogenetics has shed light on many fundamental aspects of genome organisation and evolution in this fascinating, but also highly endangered group of neotropical primates. In this review, we first provide an overview about the evolutionary origin of the inferred ancestral NWM karyotype of 2n = 54 chromosomes and about the lineage-specific chromosome rearrangements resulting in the highly divergent karyotypes of extant NWM species, ranging from 2n = 16 in a titi monkey to 2n = 62 in a woolly monkey. Next, we discuss the available data on the chromosome phylogeny of NWM in the context of recent molecular phylogenetic analyses. In the last part, we highlight some recent research on the molecular mechanisms responsible for the large-scale evolutionary genomic changes in platyrrhine monkeys.  相似文献   

10.
Sixty male crania from three Platyrrhini and three Catarrhini genera were measured by means of the craniofunctional method. The aim was to analyze functional components of the skull and relate their function and the degree of encephalization to life history variables. We recognized two major and eight minor functional components. The objectives were to test (1) if within-taxa (Platyrrhini or Catarrhini) and/or between-taxa (Platyrrhini and Catarrhini) comparisons showed minor-component differentiation; and (2) if encephalization affects both primate groups differently. After standardization by size and scaling, 15 possible within-taxa and between-taxa comparisons were made. We found a strong phylogenetic signal, i.e., cranial differences were not randomly distributed, with the between-taxa variation being greater than within-taxa. Both hypotheses tested were accepted since: (1) There was no random variation between functional cranial components. They followed definite patterns for ancestral and derived traits. (2) Encephalization was present in all scaled comparisons, with Platyrrhini showing a higher degree of encephalization than Catarrhini. We conclude that major and minor craniofunctional components should be considered as correlated traits related to life history, because we found different patterns between platyrrhines and catarrhines, and within species of both taxa.  相似文献   

11.
A problem in deciphering primate phylogeny, morphological convergence between different evolutionary lines, can be overcome by species comparisons of proteins, macromolecules with specificities closely linked to the genetic code in DNA. Various chemical, electrophoretic, and immunological data on serum and tissue proteins in primates are reviewed with respect to their phylogenetic significance. Much of this data deals with protein specificities in the Hominoidea and depicts a particularly close genetic relationship between man and the African apes. Hominoidea, Cercopithecoidea, Ceboidea, and Lorisoidea are characterized by their proteins as monophyletic or natural taxa, even though the conventional subdivisions within several of these superfamilies are not in complete accord with the protein analyses. The protein evidence supports the conventional grouping of Cercopithecoidea with Hominoidea in the infraorder Catarrhini and the grouping of Catarrhini and Platyrrhini (Ceboidea) in the suborder Anthropoidea. Lemuroidea and Lorisoidea appear to be closer to one another than to either Tupaioidea or Anthropoidea and closer to the Anthropoidea than to the Tupaioidea. Comparisons of primate DNA's by Hoyer and coworkers are demonstrating genetic affinities among primates which agree with those deduced from the comparison of protein specificities. Species differences and similarities in the relative amounts of different protein macromolecules reflect the grade relationships of primates, but, unlike the comparisons of amino-acid sequences or antigenic specificities, are not reliable indicators of phyletic affinities. Data on the ratios of M(uscle) to H(eart) type lactate dehydrogenase in a series of primate brains provides a biochemical example of the concept that there are “lower” (primitive) and “higher” (advanced) grades of evolutionary development among the extant primates.  相似文献   

12.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

13.
Ceboid origins were reviewed from the standpoint of immunodiffusion systematics. Computer processing of spur size data from several thousand trefoil Ouchterlony plate comparisons using rabbit antisera to proteins of various primate, tree shrew and elephant shrew species depicted antigenic distances among the various species. A least squares procedure (executed by a new computer program AJUST) corrected for nonreciprocity in the raw antigenic distance matrix. Another computer program (UWPGM) then produced a cladogram from the normalized antigenic distance matrix. Within the cladogram, tree shrews are closer to undisputed primates than to non-primates. The undisputed primates appear as a monophyletic assemblage, consisting of two major lineages: the Strepsirhini, including lorisoid and lemuroid branches, and the Haplorhini. Haplorhini divides into a tarsioid branch and Anthropoidea. The latter consists of two sister groups, Catarrhini (Hominoidea and Cercopithecoidea) and Platyrrhini (Ceboidea). Thus, this cladogram supports those hypotheses of ceboid origins which depict the phyletic line ancestral to the extant Anthropoidea as first separating from strepsirhine and tarsioid lineages before splitting apart into Platyrrhini and Catarrhini. Present evidence does not reveal if the most recent common ancestor of platyrrhines and catarrhines was morphologically still a prosimian or if it existed late enough in the Tertiary to have reached the simian grade.  相似文献   

14.
In a representative sample of primate species, including simians (Catarrhini and Platyrrhini) and prosimians (Lemuriformes and Lorisiformes), high-resolution, early replication banding revealed a homoeologous early replicating segment at the ends of both sex chromosomes. The DXYZ2 element, a repeated sequence specific for the human pseudoautosomal region, is conserved in the genomes of all primate species studies and is specifically localized in the distal early replicating segments of the X and Y chromosomes. Thus, cytogenetic and molecular evidence is presented of a highly conserved sex-chromosomal segment in primates. The pseudoautosomal behavior of this segment is discussed.  相似文献   

15.
BACKGROUND: The common marmoset (Callithrix jacchus) is a New World primate that has been used increasingly in toxicological evaluations including testing for testicular toxicity of pharmaceutical and environmental chemicals. Information on structural and functional characteristics of the testis in common marmosets ("marmoset" in this review) is critical for designing experiments, interpreting data collected, and determining relevance to humans in risk assessment. METHODS: This study provides a comprehensive review on testicular development, structure, function, and regulation in common marmosets. RESULTS: There is little information regarding testicular formation and development during gestation. Based on the overall pattern of embryonic development in marmosets, it is postulated that gonadal formation and testicular differentiation most likely takes place during gestational Week 6-12. After birth, the neonatal period of the first 2-3 weeks and the pubertal period from Months 6-12 are critical for establishment of spermatogenesis in the adult. In the adult, a nine-stage model has been used to describe the organization of seminiferous epithelium and multiple stages per tubular cross-section have been observed. Seminiferous epithelium is organized in a wave or partial-wave manner. There are on average two stages per cross-section of seminiferous tubules in adult marmoset testis. Sertoli cells in the marmoset have a uniform morphology. Marmoset spermatogenesis has a high efficiency. The prime determinant of germ cell production is proliferation and survival of spermatogonia. Sertoli cell proliferation during the neonatal period is regulated by follicle-stimulating hormone (FSH), but chorionic gonadotropin (CG), instead of luteinizing hormone (LH), is the only gonadotropin with luteinizing function in marmoset. The receptor gene for CG in marmoset is unique in that it does not have exon 10. Marmosets have a "generalized steroid hormone resistance," i.e., relatively high levels of steroid hormones in circulation and relatively low response to exogenous steroids. Blockage of FSH, CG, and testosterone production during the first 3 months after birth does not cause permanent damage to the male reproductive system. Initiation of spermatogenesis in the marmoset requires unique factors that are probably not present in other mammals. Normal male marmosets respond to estradiol injection positively (increased LH or CG levels), a pattern seen in normal females or castrated males, but not usually in normal males of other mammalian species. CONCLUSIONS: It seems that the endocrine system including the testis in marmosets has some unique features that have not been observed in rodents, Old World primates, and humans, but detailed comparison in these features among these species will be presented in another review. Based on the data available, marmoset seems to be an interesting model for comparative studies. However, interpretation of experimental findings on the testicular effects in marmosets should be made with serious caution. Depending on potential mode of testicular actions of the chemical under investigation, marmoset may have very limited value in predicting potential testicular or steroid hormone-related endocrine effects of test chemicals in humans.  相似文献   

16.
The relative rate of DNA evolution in primates   总被引:3,自引:0,他引:3  
In 73 relative-rate tests involving the sequences of 17 genes between humans and six nonhuman primate taxa, there is only one significant (P less than 0.01) difference in evolutionary rate--i.e., that between human and Old World-monkey psi eta-globin genes. No evolutionary rate difference between humans and Old World monkeys is evident from analysis of 18 other genes with a total length of 6 kb. This and the comparison, between humans and other primate taxa, of new extended psi eta-globin sequences suggest that earlier observations of evolutionary-rate differences between humans and other primates were based on differences that are peculiar to psi eta-globin and that are not representative of the whole genome, which appears to be evolving at a stochastically uniform rate. This is supported by whole-genome single-copy DNA and mitochondrial DNA comparisons, neither of which shows any evidence of evolutionary-rate variation among primate taxa. Uniformity in the evolutionary rate of the DNA of primate and other mammalian taxa is inconsistent with current mammalian fossil-record interpretation. Either there has been a general slowing down in rate across lineages or the fossil record has been misinterpreted.  相似文献   

17.
The suborder Anthropoidea of the primates has traditionally been divided in three superfamilies: the Hominoidea (apes and humans) and the Cercopithecoidea (Old World monkeys), together comprising the infraorder Catarrhini, and the Ceboidea (New World monkeys) belonging to the infraorder Platyrrhini.We have sequenced an approximately 390-base-pair part of the mitochondrial 12S rRNA gene for 26 species of the major groups of African monkeys and apes and constructed an extensive phylogeny based upon DNA evidence. Not only is this phylogeny of great importance in classification of African guenons, but it also suggests rearrangements in traditional monkey taxonomy and evolution. Baboons and mandrills were found to be not directly related, while we could confirm that the known four superspecies of mangabeys do not form a monophyletic group, but should be separated into two genera, one clustering with baboons and the other with mandrills. Patas monkeys are clearly related to members of the genus Cercopithecus despite their divergence in build and habitat, while the talapoin falls outside the Cercopithecus clade (including the patas monkey). Correspondence to: A.C. van der Kuyl  相似文献   

18.
Chorionic gonadotropin (CG) is a critical signal in establishing pregnancy in humans and some other primates, but this placentally expressed hormone has not been found in other mammalian orders. The gene for one of its two subunits (CG beta subunit [CGbeta]) arose by duplication from the luteinizing hormone beta subunit gene (LHbeta), present in all mammals tested. In this study, 14 primate and related mammalian species were examined by Southern blotting and DNA sequencing to determine where in mammalian phylogeny the CGbeta gene originated. Bats (order Chiroptera), flying lemur (order Dermoptera), strepsirrhine primates, and tarsiers do not have a CGbeta gene, although they possess one copy of the LHbeta gene. The CGbeta gene first arose in the common ancestor of the anthropoid primates (New World monkeys, Old World monkeys, apes, and humans), after the anthropoids diverged from tarsiers. At least two subsequent duplication events occurred in the catarrhine primates, all of which possess multiple CGbeta copies. The LHbeta-CGbeta family of genes has undergone frequent gene conversion among the catarrhines, as well as periods of strong positive selection in the New World monkeys (platyrrhines). In addition, newly generated DNA sequences from the promoter of the CG alpha subunit gene indicate that platyrrhine monkeys use a different mechanism of alpha gene expression control than that found in catarrhines.  相似文献   

19.
The first third (ca. 1200 bp) of exon 1 of the nuclear gene encoding the interstitial retinoid-binding protein (IRBP) has been sequenced for 12 representative primates belonging to Lemuriformes, Lorisiformes, Tarsiiformes, Platyrrhini, and Catarrhini, and combined with available data (13 other primates, 11 nonprimate placentals, and 2 marsupials). Phylogenetic analyses using maximum likelihood on nucleotides and amino acids robustly support the monophyly of primates, Strepsirrhini, Lemuriformes, Lorisiformes, Anthropoidea, Catarrhini, and Platyrrhini. It is interesting to note that 1) Tarsiidae grouped with Anthropoidea, and the support for this node depends on the molecular characters considered; 2) Cheirogaleidae grouped within Lemuriformes; and 3) Daubentonia was the sister group of all other Lemuriformes. Study of the IRBP evolutionary rate shows a high heterogeneity within placentals and also within primates. Maximum likelihood local molecular clocks were assigned to three clades displaying significantly contrasted evolutionary rates. Paenungulata were shown to evolve 2.5-3 times faster than Perissodactyla and Lemuriformes. Six independent calibration points were used to estimate splitting ages of the main primate clades, and their compatibility was evaluated. Divergence ages were obtained for the following crown groups: 13.8-14.2 MY for Lorisiformes, 26.5-27.2 MY for Lemuroidea, 39.6-40.7 MY for Lemuriformes, 45.4-46.7 MY for Strepsirrhini, and 56.7-58.4 MY for Haplorrhini. The incompatibility between some paleontological and molecular estimates may reflect the incompleteness of the placental fossil record, and/or indicate that the variable IRBP evolutionary rates are not fully accommodated by local molecular clocks.  相似文献   

20.
With a view to elucidate seasonal variations in testicular spermatogenesis, quantitative analysis of spermatogenic cells was carried out in non-human primate species viz. rhesus (Macaca mulatta) and bonnet (M. radiata) monkeys during breeding (October-December) and non-breeding (May-June) seasons. The results revealed significant inhibition of testicular germ cell population during non-breeding compared with the breeding period in both the species. Quantitative determination of Sertoli cell-germ cell ratio showed a marked decrease in the number of type A-spermatogonia, spermatocytes (non-pachytene and pachytene) and spermatids (in steps 1-12 of spermiogenesis) in rhesus monkey during the non-breeding period. Bonnet monkeys exhibited the significant decline in the number of primary spermatocytes and spermatids during the non-breeding phase. In addition, average diameter of round seminiferous tubules and nuclear diameter of Leydig cells also decreased significantly in rhesus monkeys. However, bonnet monkeys did not show any significant change in nuclear diameter/morphology of Leydig cells, testicular tubular diameter and number of type A-spermatogoniae. Sertoli cell number did not show any significant change during both breeding and non-breeding periods in both the species. The results of this study indicate a prominent seasonal variation in testicular spermatogenic/Leydig cells in rhesus monkeys than those observed in bonnet monkeys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号