首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although Escherichia coli does not have a natural transformation process, strains of E. coli can incorporate extracellular plasmids into cytoplasm 'naturally' at low frequencies. A standard method was developed in which stationary phase cells were concentrated, mixed with plasmids, and then plated on agar plates with nutrients which allowed cells to grow. Transformed cells could then be selected by harvesting cells and plating again on selective agar plates. Competence developed in the lag phase, but disappeared during exponential growth. As more plasmids were added to the cell suspension, the number of transformants increased, eventually reaching a plateau. Supercoiled monomeric or linear concatemeric DNA could transform cells, while linear monomeric DNA could not. Plasmid transformation was not related to conjugation and was recA-independent. Most of the E. coli strains surveyed had this process. All tested plasmids, except pACYC184, could transform E. coli. Insertion of a DNA fragment containing the ampicillin resistance gene into pACYC184 made the plasmid transformable. By inserting random 20-base-pair oligonucleotides into pACYC184 and selecting for transformable plasmids, a most frequent sequence was identified. This sequence resembled the bacterial interspersed medium repetitive sequence of E. coli, suggesting the existence of a recognition sequence. We conclude that plasmid natural transformation exists in E. coli.  相似文献   

2.
DNA microarrays were used to study the gene expression profile of Escherichia coli JM109 and K12 biofilms. Both glass wool in shake flasks and mild steel 1010 plates in continuous reactors were used to create the biofilms. For the biofilms grown on glass wool, 22 genes were induced significantly (p0.05) compared to suspension cells, including several genes for the stress response (hslS, hslT, hha, and soxS), type I fimbriae (fimG), metabolism (metK), and 11 genes of unknown function (ybaJ, ychM, yefM, ygfA, b1060, b1112, b2377, b3022, b1373, b1601, and b0836). The DNA microarray results were corroborated with RNA dot blotting. For the biofilm grown on mild steel plates, the DNA microarray data showed that, at a specific growth rate of 0.05/h, the mature biofilm after 5 days in the continuous reactors did not exhibit differential gene expression compared to suspension cells although genes were induced at 0.03/h. The present study suggests that biofilm gene expression is strongly associated with environmental conditions and that stress genes are involved in E. coli JM109 biofilm formation.  相似文献   

3.
Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.  相似文献   

4.
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, there are often problems in recovering substantial yields of correctly folded proteins. One approach to solve these problems is to have recombinant proteins secreted into the periplasmic space or culture medium. The secretory production of recombinant proteins has several advantages, such as simplicity of purification, avoidance of protease attack and N-terminal Met extension, and a better chance of correct protein folding. In addition to the well-established Sec system, the twin-arginine translocation (TAT) system has recently been employed for the efficient secretion of folded proteins. Various strategies for the extracellular production of recombinant proteins have also been developed. For the secretory production of complex proteins, periplasmic chaperones and protease can be manipulated to improve the yields of secreted proteins. This review discusses recent advances in secretory and extracellular production of recombinant proteins using E. coli.  相似文献   

5.
The GlnAP2 element has been proved to be an effective and inducible-by exogenous acetate-promoter in Escherichia coli with glnL/pta double mutations. Based on this feature, a single-copy expression vector was constructed via coupling of the glnAP2 promoter-regulated T7 RNA polymerase gene and the T7-promoter-controlled lacZ gene on a bacterial artificial chromosome. After induction with 20 mM potassium acetate, the glnL/pta double mutant E. coli harboring the single-copy plasmid produced 47,500 Miller units of beta-galactosidase activity. This high level expression, corresponding to 27% of total cell protein, was comparable to that determined with the commercial multi-copy expression vector, pET-14b, in strain E. coli Tuner (DE3) (64,300 Miller units, 41% of total cell protein). Moreover, this single-copy expression vector could be maintained for at least 150 generations even in the presence of inducers. In contrast, the multi-copy expression vector was extensively lost after induction. The results indicate that the single-copy expression system has the potential for high-level heterologous protein production for industrial applications.  相似文献   

6.
Glutathione (GSH) degradation exists in the enzymatic synthesis of GSH by Escherichia coli, however, its degradation pathway is not very clear. This paper examines the key enzymes responding to GSH degradation in E. coli with the purpose of improving GSH production. The enzymes that are probably associated with GSH degradation were investigated by disrupting their genes. The results suggested that γ-glutamyltranspeptidase (GGT) and tripeptidase (PepT) were the key enzymes of GSH degradation, and GGT contributed more to GSH degradation than PepT. Furthermore, GGT activity was affected greatly by culture temperature, and the effect of GGT on GSH degradation could be eliminated by shortening the culture time at 30°C and extending the induction time at 42°C. However, the effect of PepT on GSH degradation could be eliminated only by disrupting the PepT gene. Finally, GSH degradation was not observed in GSH biosynthesis by E. coli JW1113 (pepT , pBV03), which was cultured at 30°C for 3 h and 42°C for 5 h. GSH concentration reached 15.60 mM, which was 2.19-fold of the control. To the best of our knowledge, this is the first report of prohibiting GSH degradation with PepT-deficient recombinant E. coli. The results are helpful to investigate the GSH metabolism pathway and construct a GSH biosynthesis system.  相似文献   

7.

Background  

Use of lactose-rich concentrates from dairy processes for the induction of recombinant gene's expression has not received much attention although they are interesting low cost substrates for production of recombinant enzymes. Applicability of dairy waste for induction of recombinant genes in Escherichia coli was studied. Clones expressing Lactobacillus phage muramidase and Lactobacillus alcohol dehydrogenase were used for the experiments.  相似文献   

8.
Esters are formed by the condensation of acids with alcohols. The esters isoamyl acetate and butyl butyrate are used for food and beverage flavorings. Alcohol acetyltransferase is one enzyme responsible for the production of esters from acetyl-CoA and different alcohol substrates. The genes ATF1 and ATF2, encoding alcohol acetyltransferases from the yeast Saccharomyces cerevisiae have been sequenced and characterized. The production of acids and alcohols in mass quantities by the industrially important Clostridium acetobutylicum makes it a potential organism for exploitation of alcohol acetyltransferase activity. This report focuses on the heterologous expression of the alcohol acetyltransferases in Escherichia coli and C. acetobutylicum. ATF1 and ATF2 were cloned and expressed in E. coli and ATF2 was expressed in C. acetobutylicum. Isoamyl acetate production from the substrate isoamyl alcohol in E. coli and C. acetobutylicum cultures was determined by head-space gas analysis. Alcohol acetyltransferase I produced more than twice as much isoamyl acetate as alcohol acetyltransferase II when expressed from a high-copy expression vector. The effect of substrate levels on ester production was explored in the two bacterial hosts to demonstrate the efficacy of utilizing ATF1and ATF2 in bacteria for ester production.  相似文献   

9.
The gene coding for alcohol acetyltransferase (ATF2), which catalyzes the esterification of isoamyl alcohol and acetyl coenzyme A (acetyl-CoA), was cloned from Saccharomyces cerevisiae and expressed in Escherichia coli. This genetically engineered strain of E. coli produced the ester isoamyl acetate when isoamyl alcohol was added externally to the cell culture medium. Various competing pathways at the acetyl-CoA node were inactivated to increase the intracellular acetyl-CoA pool and divert more carbon flux to the ester synthesis pathway. Several strains with deletions in the ackA-pta and/or ldh pathways and bearing the ATF2 on a high-copy-number plasmid were constructed and studied. Compared to the wild-type, ackA-pta and nuo mutants produced higher amounts of ester and an ackA-pta-ldh-nuo mutant lower amounts. Isoamyl acetate production correlated well with intracellular coenzyme A (CoA) and acetyl-CoA levels. The ackA-pta-nuo mutant had the highest intracellular CoA/acetyl-CoA level and hence produced the highest amount of ester (1.75 mM) during the growth phase under oxic conditions and during the production phase under anoxic conditions.  相似文献   

10.
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93 g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81 ± 0.21 g/l at 1.46 g/l l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75 ± 0.09 g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08 ± 0.11 g/l) at 2.5 mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.  相似文献   

11.
12.
The isoeugenol monooxygenase gene of Pseudomonas putida IE27 was inserted into an expression vector, pET21a, under the control of the T7 promoter. The recombinant plasmid was introduced into Escherichia coli BL21(DE3) cells, containing no vanillin-degrading activity. The transformed E. coli BL21(DE3) cells produced 28.3 g vanillin/l from 230 mM isoeugenol, with a molar conversion yield of 81% at 20°C after 6 h. In the reaction system, no accumulation of undesired by-products, such as vanillic acid or acetaldehyde, was observed.  相似文献   

13.
The effect of fusing the PelB signal sequence to lysine/cadaverine antiporter (CadB) on the bioconversion of l-lysine to cadaverine was investigated. To construct a whole-cell biocatalyst for cadaverine production, four expression plasmids were constructed for the co-expression of lysine decarboxylase (CadA) and lysine/cadaverine antiporter (CadB) in Escherichia coli. Expressing CadB with the PelB signal sequence increased cadaverine production by 12 %, and the optimal expression plasmid, pETDuet-pelB-CadB-CadA, contained two T7 promoter-controlled genes, CadA and the PelB-CadB fusion protein. Based on pETDuet-pelB-CadB-CadA, a whole-cell system for the bioconversion of l-lysine to cadaverine was constructed, and three strategies for l-lysine feeding were evaluated to eliminate the substrate inhibition problem. A cadaverine titer of 221 g l?1 with a molar yield of 92 % from lysine was obtained.  相似文献   

14.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
We compared pyruvate accumulation in six strains of Escherichia coli and their corresponding ppc mutants. Each strain contained a mutation of a gene involved in the pathway to acetate synthesis. Strains with mutations in genes encoding the pyruvate dehydrogenase complex generally exhibited the greatest pyruvate accumulation of which CGSC6162 (an aceF mutant) and CGSC6162 Delta ppc were studied in greater detail in controlled fermenters. Both CGSC6162 and CGSC6162 Delta ppc accumulated greater than 35 g/l pyruvate in a medium supplemented with acetate. We observed pyruvate mass yields from glucose of 0.72 in CGSC6162, with volumetric productivities above 1.5 g l(-1) h(-1). For CGSC6162 Delta ppc, we observed pyruvate yields of 0.78 and volumetric productivities above 1.2 g l(-1) h(-1). CGSC6162 consumed all initially supplied acetate, while CGSC6162 Delta ppc first consumed and then generated acetate during the course of a 36 h fermentation. Acetate generation and pyruvate oxidase activity was pH- and temperature-dependent, with a pH of 7.0 and the lowest temperature studied (32 degrees C) favoring the greatest pyruvate generation. Lactate was an unexpected by-product even though measured lactate dehydrogenase (LDH) activity was very low.  相似文献   

16.
P-fimbriae, S-fimbriae and AFA-adhesins are virulence factors responsible for adherence ofEscherichia coli strains to extraintestinal host-cell surface. Detection ofpap-,sfa- andafa-specific sequences performed by PCR revealed 74%pap +, 65%sfa +, and 8.3%afa + strains in a group of 84 extraintestialE. coli isolates. Detection in a group of fecal strains showed 29%pap +, 21%sfa + and 4%afa + strains.pap together withsfa were found as the most frequent combination (56%) among extraintestinal isolates probably due to localization ofpap-andsfa-operons on a common pathogenicity island. The occurrence ofafa-specific sequence among 56 urine strains was 11%, although noafa + strain was detected among 28 gynecological isolates. No strains with detected adhesin operons were found among twenty (24%) extraintestinalE. coli strains.  相似文献   

17.
The advent of recombinant DNA technology has revolutionized the strategies for protein production. Due to the well-characterized genome and a variety of mature tools available for genetic manipulation, Escherichia coli is still the most common workhorse for recombinant protein production. However, the culture for industrial applications often presents E. coli cells with a growth condition that is significantly different from their natural inhabiting environment in the gastrointestinal tract, resulting in deterioration in cell physiology and limitation in cell’s productivity. It has been recognized that innovative design of genetically engineered strains can highly increase the bioprocess yield with minimum investment on the capital and operating costs. Nevertheless, most of these genetic manipulations, by which traits are implanted into the workhorse through recombinant DNA technology, for enhancing recombinant protein productivity often translate into the challenges that deteriorate cell physiology or even jeopardize cell survival. An in-depth understanding of these challenges and their corresponding cellular response at the molecular level becomes crucial for developing superior strains that are more physiologically adaptive to the production environment to improve culture productivity. With the accumulated knowledge in cell physiology, whose importance to gene overexpression was to some extent undervalued previously, this review is intended to focus on the recent biotechnological advancement in engineering cell physiology to enhance recombinant protein production in E. coli.  相似文献   

18.
We have identified a mutant slowmotion phenotype in first instar larval peristaltic behaviour of Drosophila. By the end of embryogenesis and during early first instar phases, slowmo mutant animals show a marked decrease in locomotory behaviour, resulting from both a reduction in number and rate of peristaltic contractions. Inhibition of neurotransmitter release, using targeted expression of tetanus toxin light chain (TeTxLC), in the slowmo neurons marked by an enhancer-trap results in a similar phenotype of largely absent or uncoordinated contractions. Cloning of the slowmo gene identifies a product related to a family of proteins of unknown function. We show that Slowmo is associated with mitochondria, indicative of it being a mitochondrial protein, and that during embryogenesis and early larval development is restricted to the nervous system in a subset of cells. The enhancer-trap marks a cellular component of the CNS that is seemingly required to regulate peristaltic movement.  相似文献   

19.
The excretion of the aromatic amino acid l-tyrosine was achieved by manipulating three gene targets in the wild-type Escherichia coli K12: The feedback-inhibition-resistant (fbr) derivatives of aroG and tyrA were expressed on a low-copy-number vector, and the TyrR-mediated regulation of the aromatic amino acid biosynthesis was eliminated by deleting the tyrR gene. The generation of this l-tyrosine producer, strain T1, was based only on the deregulation of the aromatic amino acid biosynthesis pathway, but no structural genes in the genome were affected. A second tyrosine over-producing strain, E. coli T2, was generated considering the possible limitation of precursor substrates. To enhance the availability of the two precursor substrates phosphoenolpyruvate and erythrose-4-phosphate, the ppsA and the tktA genes were over-expressed in the strain T1 background, increasing l-tyrosine production by 80% in 50-ml batch cultures. Fed-batch fermentations revealed that l-tyrosine production was tightly correlated with cell growth, exhibiting the maximum productivity at the end of the exponential growth phase. The final l-tyrosine concentrations were 3.8 g/l for E. coli T1 and 9.7 g/l for E. coli T2 with a yield of l-tyrosine per glucose of 0.037 g/g (T1) and 0.102 g/g (T2), respectively.  相似文献   

20.
The review summarizes the main approaches applied during the creation of L-tryptophan producing strains based on Escherichia coli for the industrial production of this amino acid. In addition, some prospects for the further improvement of tryptophan producers to increase their productivity and improve their technological characteristics based on systems metabolic engineering approaches are outlined in the review. These approaches can be used to obtain the producers of other aromatic amino acids and tryptophan precursors or derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号