首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.  相似文献   

2.
The purpose of this study was to clarify the influence of muscle-tendon complex stretch on electromechanical delay (EMD) in terms of the extent of tendon slack in the human medial gastrocnemius (MG). EMD and MG tendon length were measured at each of five ankle joint angles (-30, -20, -10, 0, and 5 degrees : positive values for dorsiflexion) using percutaneous electrical stimulation and ultrasonography, respectively. The extent of MG tendon slack was calculated as MG tendon length shortening, standardized with MG tendon slack length obtained at the joint angle (-16 degrees +/- 5 degrees ) where the passive ankle joint torque was zero. EMD at -30 degrees (19.2 +/-2.2 ms) and -20 degrees (17.2 +/- 1.3 ms) was significantly greater than that at -10 degrees (16.0 +/-2.3 ms), 0 degrees (15.0 +/-1.4 ms), and 5 degrees (14.8 +/-1.4 ms), and at 0 and 5 degrees, respectively. The relative EMD, normalized with the maximal EMD for each subject, decreased dependent on the extent of decrease in MG tendon slack. There were no significant differences in EMD among the joint angles (-10, 0, and 5 degrees ) where MG tendon slack was taken up. These results suggest that the extent of tendon slack is an important factor for determining EMD.  相似文献   

3.
Ankle foot orthoses (AFOs) are designed to improve gait for individuals with neuromuscular conditions and have also been used to reduce energy costs of walking for unimpaired individuals. AFOs influence joint motion and metabolic cost, but how they impact muscle function remains unclear. This study investigated the impact of different stiffness AFOs on medial gastrocnemius muscle (MG) and Achilles tendon (AT) function during two walking speeds. We performed gait analyses for eight unimpaired individuals. Each individual walked at slow and very slow speeds with a 3D printed AFO with no resistance (free hinge condition) and four levels of ankle dorsiflexion stiffness: 0.25 Nm/°, 1 Nm/°, 2 Nm/°, and 3.7 Nm/°. Motion capture, ultrasound, and musculoskeletal modeling were used to quantify MG and AT lengths with each AFO condition. Increasing AFO stiffness increased peak AFO dorsiflexion moment with decreased peak knee extension and peak ankle dorsiflexion angles. Overall musculotendon length and peak AT length decreased, while peak MG length increased with increasing AFO stiffness. Peak MG activity, length, and velocity significantly decreased with slower walking speed. This study provides experimental evidence of the impact of AFO stiffness and walking speed on joint kinematics and musculotendon function. These methods can provide insight to improve AFO designs and optimize musculotendon function for rehabilitation, performance, or other goals.  相似文献   

4.
It is unclear if skeletal muscles act mechanically as independent actuators. The purpose of the present study was to investigate force transmission from soleus (SO) muscle for physiological lengths as well as relative positions in the intact cat hindlimb. We hypothesized that force transmission from SO fibers will be affected by length changes of its two-joint synergists. Ankle plantar flexor moment on excitation of the SO was measured for various knee angles (70-140 degrees ). This involved substantial length changes of gastrocnemius and plantaris muscles. Ankle angle was kept constant (80 degrees -90 degrees ). However, SO ankle moment was not significantly affected by changes in knee angle; neither were half-relaxation time and the maximal rate of relaxation (P > 0.05). Following tenotomy, SO ankle moment decreased substantially (55 +/- 16%) but did not reach zero, indicating force transmission via connective tissues to the Achilles tendon (i.e., epimuscular myofascial force transmission). During contraction SO muscle shortened to a much greater extent than in the intact case (16.0 +/- 0.6 vs. 1.0 +/- 0.1 mm), which resulted in a major position shift relative to its synergists. If the SO was moved back to its position corresponding to the intact condition, SO ankle moment approached zero, and most muscle force was exerted at the distal SO tendon. Our results also suggested that in vivo the lumped intact tissues linking SO to its synergists are slack or are operating on the toe region of the stress-strain curve. Thus, within the experimental conditions of the present study, the intact cat soleus muscle appears to act mechanically as an independent actuator.  相似文献   

5.
A deterministic model was developed and validated to calculate instantaneous ankle and knee moments during walking using processed EMG from representative muscles, instantaneous joint angle as a correlate of muscle length and angular velocity as a correlate of muscle velocity, and having available total instantaneous joint moments for derivation of certain model parameters. A linear regression of the moment on specifically processed EMG, recorded while each subject performed cycled isometric calibration contractions, yielded the constants for a basic moment-EMG relationship. Using the resultant moment for optimization, the predicted moment was proportionally augmented for longer muscle lengths and reduced for shorter lengths. Similarly, the predicted moment was reduced for shortening velocities and increased if the muscle was lengthening. The plots of moments predicted using the full model and those calculated from link segment mechanics followed each other quite closely. The range of root mean square errors were: 3.2-9.5 Nm for the ankle and 4.7-13.0 Nm for the knee.  相似文献   

6.
The gastrocnemius has been viewed as an important contributor at the knee joint as a joint flexor and stabilizer across all the knee and ankle joint angles. The purpose of this study was to investigate the influence of knee and ankle joint angles on the knee flexor function of the gastrocnemius. Seventeen participants were tested on a Biodex dynamometer with the gastrocnemius muscle selectively stimulated at a standardized level of electrical current. The results indicated that both ankle and knee joint angle influence the knee joint flexion moment produced by the gastrocnemius. Further analysis revealed that the flexion moment was greatest with the knee joint straight (180 degrees ) across all ankle joint angles. The greatest reduction in knee flexion moment occurred between 180 and 165 degrees of knee angle. No significant difference was observed in the knee flexion moment between 165 degrees and 115 degrees knee flexion, and little knee flexion moment was observed at knee angles of 90 degrees and 75 degrees. The dramatic reduction of moment between 180 degrees and 165 degrees knee angle is possibly due to the change of moment arm while the little moment production during extreme flexion (90 degrees and 75 degrees ) may be due to the reduction of muscle length.  相似文献   

7.
Objectives: Although overuse running injury risks for the ankle and knee are high, the effect of different shoe designs on Achilles tendon force (ATF) and Patellofemoral joint contact force (PTF) loading rates are unclear. Therefore, the primary objective of this study was to compare the ATF at the ankle and the PTF and Patellofemoral joint stress force (PP) at the knee using different running shoe designs (forefoot shoes vs. normal shoes). Methods: Fourteen healthy recreational male runners were recruited to run over a force plate under two shoe conditions (forefoot shoes vs. normal shoes). Sagittal plane ankle and knee kinematics and ground reaction forces were simultaneously recorded. Ankle joint mechanics (ankle joint angle, velocity, moment and power) and the ATF were calculated. Knee joint mechanics (knee joint angle velocity, moment and power) and the PTF and PP were also calculated. Results: No significant differences were observed in the PTF, ankle plantarflexion angle, ankle dorsiflexion power, peak vertical active force, contact time and PTF between the two shoe conditions. Compared to wearing normal shoes, wearing the forefoot shoes demonstrated that the ankle dorsiflexion angle, knee flexion velocity, ankle dorsiflexion moment extension, knee extension moment, knee extension power, knee flexion power and the peak patellofemoral contact stress were significantly reduced. However, the ankle dorsiflexion velocity, ankle plantarflexion velocity, ankle plantarflexion moment and Achilles tendons force increased significantly. Conclusions: These findings suggest that wearing forefoot shoes significantly decreases the patellofemoral joint stress by reducing the moment of knee extension, however the shoes increased the ankle plantarflexion moment and ATF force. The forefoot shoes effectively reduced the load on the patellofemoral joint during the stance phase of running. However, it is not recommended for new and novice runners and patients with Achilles tendon injuries to wear forefoot shoes.  相似文献   

8.
We developed an apparatus to quantify the biomechanical behavior of the dorsi- and plantarflexor muscles of the ankle of an anesthetized mouse. When the dorsi- or plantarflexor muscle group is activated by electrical stimulation of either the peroneal or tibial nerve, the apparatus measures the moment developed about the ankle during isometric, isovelocity shortening, or isovelocity lengthening contractions. Displacements may be performed over the full 105 degrees range of ankle motion with an angular resolution of 0.09 degrees. Bidirectional isovelocity ramps in ankle angle up to 1,100 degrees/s are possible and are equivalent to maximum velocities of 2.3 fiber lengths/s (Lf/s) for the fibers in tibialis anterior muscle and 11.9 Lf/s for those in gastrocnemius muscle. During single contractions of the dorsi- and plantarflexor muscle groups at 37 degrees C and with both knee and ankle joint at 90 degrees neutral position, the isometric tetanic force developed was 1.4 and 3.3 N, power output at 2.2 Lf/s was 3.1 and 5.9 mW, and power absorption at 0.5 Lf/s was 4.9 and 9.0 mW, respectively. These values are in reasonable agreement with data from the same muscle groups tested in situ. We conclude that the apparatus provides valid measurements of force and power of the dorsi- and plantarflexor muscle groups.  相似文献   

9.
The passive elastic moment at the knee and its influence on human gait   总被引:1,自引:0,他引:1  
The elastic component of the passive moment at the knee was measured in situ. The force needed to manually range the knee from approximately 90 degrees of flexion to full extension was measured. Hip and ankle angle were held fixed. The passive knee moment, computed from the force and knee angle data, was compared to the total knee moment required for normal gait. This comparison suggested that the passive moment can contribute a significant portion of the total joint moment during some phases of the gait cycle.  相似文献   

10.
The passive elastic properties of a muscle-tendon complex are usually estimated from the relationship between the joint angle and the passive resistive torque, although the properties of the different structures crossing the joint cannot be easily assessed. This study aimed to determine the passive mechanical properties of the gastrocnemius medialis muscle (GM) using supersonic shear imaging (SSI) that allows the measurement of localized muscle shear modulus (μ). The SSI of the GM was taken for 7 subjects during passive ankle dorsiflexion at a range of knee positions performed on an isokinetic dynamometer. The relationship between normalized μ and the length of the gastrocnemius muscle-tendon units (GMTU) was very well fitted to an exponential model (0.944相似文献   

11.
The study of muscle growth and muscle length adaptations requires measurement of passive length-tension properties of individual muscles, but until now such measurements have only been made in animal muscles. We describe a new method for measuring passive length-tension properties of human gastrocnemius muscles in vivo. Passive ankle torque and ankle angle data were obtained as the ankle was rotated through its full range with the knee in a range of positions. To extract gastrocnemius passive length-tension curves from passive torque-angle data it was assumed that passive ankle torque was the sum of torque due to structures which crossed only the ankle joint (this torque was a 6-parameter function of ankle joint angle) and a torque due to the gastrocnemius muscle (a 3-parameter function of knee and ankle angle). Parameter values were estimated with non-linear regression and used to reconstruct passive length-tension curves of the gastrocnemius. The reliability of the method was examined in 11 subjects by comparing three sets of measurements: two on the same day and the other at least a week later. Length-tension curves were reproducible: the average root mean square error was 5.1+/-1.1 N for pairs of measurements taken within a day and 7.3+/-1.2 N for pairs of measurements taken at least a week apart (about 3% and 6% of maximal passive tension, respectively). Length-tension curves were sensitive to mis-specification of moment arms, but changes in length-tension curves were not. The new method enables reliable measurement of passive length-tension properties of human gastrocnemius in vivo, and is likely to be useful for investigation of changes in length-tension curves over time.  相似文献   

12.
This study examined the impact of lower extremity joint stiffnesses and simulated joint contractures on the muscle effort required to maintain static standing postures after a spinal cord injury (SCI). Static inverse computer simulations were performed with a three-dimensional 15 degree of freedom musculoskeletal model placed in 1600 different standing postures. The required lower extremity muscle forces were calculated through an optimization routine that minimized the sum of the muscle stresses squared, which was used as an index of the muscle effort required for each standing posture. Joint stiffnesses were increased and decreased by 100 percent of their nominal values, and contractures were simulated to determine their effects on the muscle effort for each posture. Nominal muscle and passive properties for an individual with a SCI determined the baseline muscle effort for comparisons. Stiffness changes for the ankle plantar flexion/dorsiflexion, hip flexion/extension, and hip abduction/adduction directions had the largest effect on reducing muscle effort by more than 5 percent, while changes in ankle inversion/eversion and knee flexion/extension had the least effect. For erect standing, muscle effort was reduced by more than 5 percent when stiffness was decreased at the ankle plantar flexion/dorsiflexion joint or hip flexion/extension joint. With simulated joint contractures, the postural workspace area decreased and muscle effort was not reduced by more than 5 percent for any posture. Using this knowledge, methods can be developed through the use of orthoses, physical therapy, surgery or other means to appropriately augment or diminish these passive moments during standing with a neuroprosthesis.  相似文献   

13.
The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.  相似文献   

14.
The purpose of this study was to examine the effect of different muscle contraction modes and intensities on patellar tendon moment arm length (d(PT)). Five men performed isokinetic concentric, eccentric and passive knee extensions at an angular velocity of 60 deg/s and six men performed gradually increasing to maximum effort isometric muscle contractions at 90( composite function) and 20( composite function) of knee flexion. During the tests, lateral X-ray fluoroscopy imaging was used to scan the knee joint. The d(PT) differences between the passive state and the isokinetic concentric and extension were quantified at 15( composite function) intervals of knee joint flexion angle. Furthermore, the changes of the d(PT) as a function of the isometric muscle contraction intensities were determined during the isometric knee extension at 90( composite function) and 20( composite function) of knee joint flexion. Muscle contraction-induced changes in knee joint flexion angle during the isometric muscle contraction were also taken into account for the d(PT) measurements. During the two isometric knee extensions, d(PT) increased from rest to maximum voluntary muscle contraction (MVC) by 14-15%. However, when changes in knee joint flexion angle induced by the muscle contraction were taken into account, d(PT) during MVC increased by 6-26% compared with rest. Moreover, d(PT) increased during concentric and eccentric knee extension by 3-15%, depending on knee flexion angle, compared with passive knee extension. These findings have important implications for estimating musculoskeletal loads using modelling under static and dynamic conditions.  相似文献   

15.
During maximal efforts, antagonistic activity can significantly influence the joint moment. During maximal voluntary "isometric" contractions, certain joint rotation can not be avoided. This can influence the estimation of the antagonistic moment from the EMG activity. Our study aimed to quantify the influence on the calculated agonistic moment produced during maximal voluntary isometric plantarflexions (a) when estimating antagonistic moments at different ankle angles and (b) when placing the EMG electrodes at different portions over the m. tibialis anterior. Ten subjects performed maximal voluntary isometric plantarflexions at 90 degrees ankle angle. In order to estimate the antagonistic moment, submaximal isometric dorsiflexions were performed at various ankle angles. Moment and EMG signals from mm. triceps surae and tibialis anterior were measured. The RMS differences between plantarflexors moment calculated considering the antagonistic cocontraction estimated at the same ankle angle at which the maximal plantarflexion moment was achieved and at different ankle angles ranged from 0.10 to 2.94 Nm. The location of the electrodes led to greater RMS differences (2.35-5.18 Nm). In conclusion, an angle 10 degrees greater than the initial plantarflexion angle is enough to minimize the effect of the change in length of the m. tibialis anterior during the plantarflexion on the estimation of the plantarflexors moment. The localisation of the electrodes over the m. tibialis anterior can influence the estimation of its cocontraction during maximal plantarflexion efforts.  相似文献   

16.
Examination of the effects of fatigue on antagonist function can provide information on the role of antagonists in limiting the resultant joint moment and stabilizing the knee. Therefore, the purpose of this study was to examine the moment, agonist and antagonist electromyographic (EMG) activity levels at different angular positions during an isokinetic muscular endurance knee extension test. Fifteen healthy males (age 22.6+/-1.9 yr) performed 34 maximal isokinetic concentric efforts of the knee extensors at 120 degrees s(-1). The EMG activity of vastus medialis and biceps femoris was recorded using surface electrodes. The motion ranged from 90 degrees to 0 degrees of knee flexion. The average moment and average EMG (AEMG) at 10-35 degrees, 36-55 degrees and 56-80 degrees angular position intervals were calculated for each repetition. Twenty eight efforts were further analysed. The moment of force demonstrated a decline of 70% at the end of the test. Two-way repeated measures analysis of variance tests indicated that this decline was significant (p < 0.05). No significant effects of angular position on fatigue moment characteristics were found. The agonist (vastus medialis) AEMG during the first repetition demonstrated a significant increase of 40-60% towards the middle part of the test (p < 0.05). In the second part of the test, the VM AEMG at longer muscle lengths was significantly higher compared to the initial efforts whereas the AEMG at short muscle lengths returned to initial values. The antagonist AEMG at all angular positions did not change significantly during the test. The decline in the resultant joint moment could be attributed to the effects of fatigue on the agonist muscle function. The agonist AEMG fatigue-patterns are dependent on the length of the muscle and may be due to alterations in the motor unit recruitment and/or activation failure in the quadriceps muscle. The biceps femoris maintains constant submaximal (21-33% of the maximum) AEMG activity which may play an important role in the stability of the knee joint. The contribution of antagonist activity to the resultant joint moment increases during the last part of an isokinetic concentric muscle endurance test.  相似文献   

17.
Predicting muscle fascicle length changes during passive movements may lead to a better understanding of muscle function. The purpose of this study was to experimentally compare fascicle length changes in the gastrocnemius during two-joint passive movements with a previously derived kinematic model based on anatomical measures from a cadaver. The ratio of passive ankle to knee motion was manipulated to generate medial gastrocnemius fascicle elongation and lateral gastrocnemius fascicle shortening. Ultrasound images from both heads of the gastrocnemius fascicles were acquired at 10 degrees knee flexion increments and compared with this kinematic model. Our results suggest that the two-joint kinematic model from which we originally based our knee and ankle movements did not adequately reflect fascicle length changes during any of the movement conditions in this study. From our data, we propose that for every degree of ankle motion the medial and lateral gastrocnemius changes 0.42 mm and 0.96 mm, respectively, whereas changes of 0.14 mm and 0.22 mm are observed for the medial and lateral gastrocnemius, respectively, during knee movements.  相似文献   

18.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

19.
This study was designed to test the assumption that elastic tissues of the ankle are prestressed, by investigating the presence of simultaneous opposite passive elastic moments and thus, passive co-tension, at the ankle joint. A prestressed two-spring model used to generate qualitative predictions of the effects of stretching the posterior elastic structures of the ankle on the net passive moment of this joint was used. Twenty-seven healthy individuals were subjected to passive evaluation of the net elastic moment of the ankle in the sagittal plane, with the knee positioned at 90°, 60°, 30° and 0° of flexion, in order to change the length of the posterior biarticular elastic structures. The placement of the knee in the more extended positions caused changes in the net passive moment as predicted by the prestressed model. The ankle position in which the net passive moment was equal to zero was shifted to more plantar flexed positions (p<0.001) and there was a global increase in ankle stiffness since both passive dorsiflexion stiffness (p≤0.037) and passive plantar flexion stiffness (p≤0.029) increased. The normalized terminal plantar flexion stiffness also increased (p≤0.047), suggesting that biarticular posterior elastic structures are pre-strained and still under tension when the ankle is maximally plantar flexed and the knee is positioned at 60° of flexion. Resting positions were indicative of equilibrium between opposite passive elastic moments. The results revealed that there is passive co-tension at the ankle, demonstrating the existence of prestress in elastic structures of this joint.  相似文献   

20.
Changes in fascicle length and tension of the soleus (SOL) muscle have been observed in humans using B-mode ultrasound to examine the knee from different angles. An alternative technique of assessing muscle and tendon stiffness is myometry, which is non-invasive, accessible, and easy to use. This study aimed to estimate the compressive stiffness of the distal SOL and Achilles tendon (AT) using myometry in various knee and ankle joint positions. Twenty-six healthy young males were recruited. The Myoton-PRO device was used to measure the compressive stiffness of the distal SOL and AT in the dominant leg. The knee was measured in two positions (90° of flexion and 0° of flexion) and the ankle joint in three positions (10° of dorsiflexion, neutral position, and 30° of plantar flexion) in random order. A three-way repeated-measures ANOVA test was performed. Significant interactions were found for structure × ankle position, structure × knee position, and structure × ankle position × knee position (p < 0.05). The AT and SOL showed significant increases in compressive stiffness with knee extension over knee flexion for all tested ankle positions (p < 0.05). Changes in stiffness relating to knee positioning were larger in the SOL than in the AT (p < 0.05). These results indicate that knee extension increases the compressive stiffness of the distal SOL and AT under various ankle joint positions, with a greater degree of change observed for the SOL. This study highlights the relevance of knee position in passive stiffness of the SOL and AT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号