首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA haplotype data from the phenylalanine hydroxylase (PAH) locus are available from a number of European populations as a result of RFLP testing for genetic counseling in families with phenylketonuria (PKU). We have analyzed data from Hungary and Czechoslovakia together with published data from five additional countries--Denmark, Switzerland, Scotland, Germany, and France--representing a broad geographic and ethnographic range. The data include 686 complete chromosomal haplotypes for eight RFLP sites assayed in 202 unrelated Caucasian families with PKU. Forty-six distinct RFLP haplotypes have been observed to date, 10 unique to PKU-bearing chromosomes, 12 unique to non-PKU chromosomes, and the remainder found in association with both types. Despite the large number of haplotypes observed (still much less than the theoretical maximum of 384), five haplotypes alone account for more than 76% of normal European chromosomes and four haplotypes alone account for more than 80% of PKU-bearing chromosomes. We evaluated the distribution of haplotypes and alleles within these populations and calculated pairwise disequilibrium values between RFLP sites and between these sites and a hypothetical PKU "locus." These are statistically significant differences between European populations in the frequencies of non-PKU chromosomal haplotypes (P = .025) and PKU chromosomal haplotypes (P much less than .001). Haplotype frequencies of the PKU and non-PKU chromosomes also differ significantly (P much less than .001. Disequilibrium values are consistent with the PAH physical map and support the molecular evidence for multiple, independent PKU mutations in Caucasians. However, the data do not support a single geographic origin for these mutations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Summary Eight polymorphic restriction enzyme sites at the phenylalanine hydroxylase (PAH) locus were analyzed from the parental chromosomes in 33 Danish nuclear families with at least one phenylketonuric (PKU) child. Determination of haplotypes of 66 normal chromosomes and 66 chromosomes bearing mutant allele (S) demonstrated that there are at least two haplotypes which occur predominantly on PKU chromosomes and rarely otherwise. Overall, the relative frequencies of the various haplotypes are significantly different on PKU-and normal-allele bearing chromosomes, even though there is no predominantly occurring unique haplotype which can characterize the PKU chromosomes. In addition, no significant association (linkage disequilibrium) between any single polymorphic site and the mutant allele (s) was observed. The results suggest that either the phenylketonuric mutation was very ancient so that the polymorphic sites and the mutation have reached linkage equilibrium or the mutant allele (s) are the results of multiple mutations in the phenylalanine hydroxylase gene in man. Furthermore, a crude relationship between standardized linkage disequilibria and physical map distances of the polymorphic sites indicates that there is no apparent recombination hot-spot in the human phenylalanine hydroxylase gene, since the recombination rate within the locus apears to be uniform and likely to be occurring at a rate similar to that within the HLA gene cluster. The limitations of this later analysis are discussed in view of the sampling errors of disequilibrium measure used, and the potential untility of the PAH haplotypes for prenatal diagnosis and detection of PKU carriers is established.  相似文献   

3.
Summary The genetic heterogeneity at the phenylalanine hydroxylase (PAH) locus was studied in 88 families including 93 of the 105 children with phenylketonuria (PKU) or hyperphenylalaninemia (HPA) detected through the Swedish neonatal screening program from 1966 to the end of 1986. Haplotypes based on eight restriction fragment length polymorphisms (RFLPs) at the PAH locus could be constructed for 132 normal and 136 mutant alleles. The normal alleles were of 27 different RFLP haplotypes, 9 of which have not been described previously, but there was a dominance of a few haplotypes common to many European populations. The distribution of mutant alleles was significantly different from that in neighboring countries, even though over 90% of all mutant alleles were confined to six RFLP haplotypes, also prevalent in other European populations. Allele-specific oligonucleotide hybridization analysis for the Arg408 to Trp408 mutation and for the G to A splicing mutation in intron 12 showed exceptions to the previously reported linkage of these mutations to mutant haplotypes 2 and 3, respectively. Correlation of mutant alleles with clinical phenotypes pointed to the presence of at least two different mutations associated with each of six haplotypes. We argue that PKU/HPA in the Swedish population may be caused by at least 13 different mutations in addition to the 4 already identified. The theoretical informativity of RFLP analysis in heterozygote detection and prenatal diagnosis in PKU/HPA families was estimated at approximately 85%. Carrier detection could, in effect, be accomplished for 88% of the 56 healthy siblings in the families studied.  相似文献   

4.
5.
6.
A detailed study of the mutant phenylalanine hydroxylase (PAH) gene from the eastern part of the Czech Republic (Moravia) is reported. A total of 190 mutant alleles from 95 phenylketonuria (PKU) families were analyzed for 21 prevalent Caucasian mutations and restriction fragment length polymorphism /variable number of tandem repeats (RFLP/VNTR) haplotypes. Eighty per cent of all mutant alleles were found to carry 11 mutations. The most common molecular defect was the mutation R408W (55.3%), with a very high degree of homozygosity (34.6%). Each of four other mutations (R158Q, R243X, G272X, IVS12nt1) accounted for more than 3% of PKU alleles. Rarely present were mutations IVS10nt546 (2.6%), R252W (2.6%), L48S (2.1%), R261Q (1.6%), Y414C (1.0%) and I65T (0.5%). Mutations that have been predominantly described in southern Europe (IVS7nt1, A259V, Y277D, R241H, T278N) were not detected. A total of 14 different mutant haplotypes were observed. Three unusual genotype-haplotype associations were identified (R158Q on haplotypes 2.3 and 7.8 and R252W on haplotype 69.3). There was a strong association between the mutation R408W and haplotype 2.3 (54.7%). Heterogeneity was found at mutations R408W (haplotypes 2.3 and 5.9), R158Q (haplotypes 4.3, 2.3 and 7.8) and IVS10nt546 (haplotypes 6.7 and 34.7). The molecular basis of PKU in the Moravian area appears to be relatively homogeneous in comparison with other southern and western European populations, thus providing a good starting point for prenatal diagnosis and early clinical classification.  相似文献   

7.
8.
9.
10.
Summary A total of 252 chromosomes from 126 patients with phenylalanine hydroxylase (PAH) deficiencies were analyzed for both mutant genotypes and restriction fragment length polymorphism (RFLP) haplotypes at the PAH locus. The mutant genes studied originated either from Western Europe (116 alleles) or from Mediterranean countries (136 alleles). Only 27% of all mutant alleles were found to carry identified mutations, particularly mutations at codon 252 (2.3%), 261 (7.5%), 280 (6.3%), 408 (3.5%) and at the splice donor site of intron 12 (6.3%). The mutant genotypes were associated with RFLP haplotypes 7, 1, 38, 2 and 3 at the PAH locus respectively. Except for the splice mutation of intron 12, these associations were preferential, but not exclusive, since the other four mutations were found on the background of at least two RFLP haplotypes. These results, together with the observation that 85% of PAH deficient patients are heterozygotes for their mutant genotypes, emphasize the great heterogeneity of PAH deficiencies in Mediterranean countries and hamper systematic DNA testing for carrier status in this population.  相似文献   

11.
Polymorphic DNA haplotypes at the LDL receptor locus.   总被引:26,自引:8,他引:18       下载免费PDF全文
Mutations in the low-density lipoprotein (LDL) receptor gene result in the autosomal dominant disorder familial hypercholesterolemia (FH). Many different LDL receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL receptor genes for prenatal diagnosis of homozygous FH or to study the role of the LDL receptor gene in polygenic hypercholesterolemia requires the use of closely linked RFLPs. In the present study we used 10 different RFLPs, including three newly described polymorphisms, to construct 123 independent haplotypes from 20 Caucasian American pedigrees. Our sample contained 31 different haplotypes varying in frequency from 0.8% to 29.3%; the five most common haplotypes account for 67.5% of the sample. The heterozygosity and PIC of each site were determined, and these values disclosed that eight of the RFLPs were substantially polymorphic. Linkage-disequilibrium analysis of the haplotype data revealed strong nonrandom associations among all 10 RFLPs, especially among those sites clustered in the 3' region of the gene. Evolutionary analysis suggests the occurrence of both mutational and recombinational events in the generation of the observed haplotypes. A strategy for haplotype analysis of the LDL receptor gene in individuals of Caucasian American descent is presented.  相似文献   

12.
Eight polymorphic restriction enzyme sites at phenylalanine hydroxylase locus from the parental chromosomes in Polish families with phenylketonuria were analyzed. Among 28 chromosomes studied, we identified haplotypes found within the Danish population. Haplotype 2 has been found in 25% of affected alleles. One of the patients studied is homozygous for this haplotype.  相似文献   

13.
14.
Summary RFLPs of 36 normal and 41 mutant alleles at the phenylalanine hydroxylase locus were determined in 31 Portuguese kindreds. A total of 14 haplotypes including 10 normal and 7 mutant alleles were observed. Almost 75% of all mutant alleles were confined within only two haplotypes, namely haplotype 9 (17.1%) and haplotype 1 (56.1%). This frequency of mutant haplotype 1 in Portugal is, to our knowledge, the highest for this mutant haplotype in all studies reported to date. Other mutant haplotypes were either rare (haplotype 2, 9.7%) or totally absent (haplotype 3, 0%). Only 24.5% of all mutant alleles were found to consistently carry identified mutations, particularly R261Q (9.8%), R252W (3.3%), R408W (1.6%) and I94 (3.3%). A new mutation, L249F, located in the seventh exon of the gene, accounted for 6.5% of all mutant alleles in our series. Interestingly, this mutant genotype was consistently associated with mutant haplotype 1 (P<0.01), as also observed for the R261Q mutation. It appears, therefore, that mutant haplotype 1 is genotypically heterogeneous in Portugal and that more than two mutations account for its prevalence in this country.  相似文献   

15.
The data on analysis of phenylalanine hydroxilase (PAH) gene mutations in 39 phenylketonuria (PKU) families from Ukraine are presented. Obtained results indicate that the most common mutation observed in the Ukrainian population is R408W mutation (66.6%). Besides two minor mutations R158Q (2.6%) and Y414C (1.25%) were revealed.  相似文献   

16.
Many low-density lipoprotein (LDL) receptor mutations have been identified and characterized, demonstrating a high degree of allelic heterogeneity at this locus. The ability to identify mutant LDL-receptor genes for prenatal diagnosis of familial hypercholesterolemia (FH) or to study the role of the LDL-receptor gene in polygenic hypercholesterolemia requires the use of closely linked restriction fragment lenghth polymorphisms (RFLPs). In the present study nine different RFLPs (TaqI, StuI, HincII, BstEII, AvaII, PvuII, MspIA, MspIB, and NcoI) and a sequence variation at Arg450 were used to clarify the characteristics of the LDL-receptor gene in Koreans. A total of 978 LDL-receptor alleles from 244 members of 43 different pedigrees (15 normal and 28 FH pedigrees) and 245 individuals (187 normal and 58 FH) were analyzed. Frequencies of these polymorphisms did not differ significantly between controls and FH patients. Individually, seven sites--TaqI, BstEII, AvaII, MspIA, MspIB, NcoI and Arg450--had heterozygosity indices ranging from 0.3610 to 0.4601, whereas the PvuII site displayed low levels of polymorphism and StuI was monomorphic. Haplotypes were constructed for 215 individuals of 13 normal and 24 FH pedigrees using the nine polymorphisms. Of 512 (= 2(9)) possible combinations for the nine polymorphic sites, 39 unique haplotypes were detected. The frequency distribution of individual haplotypes ranged from 1/155 (0.65%) to 40/155 (25.8%). The four most common haplotypes accounted for 59.4% of those sampled. Statistical analysis of the haplotypes indicated marked linkage disequilibrium for these 10 sites and throughout the region containing the LDL-receptor gene. Owing to the high degree of linkage disequilibrium over the entire locus, not all RFLPs were informative. We rank each RFLP according to its informativeness and present a strategy for the optimal selection of RFLPs for pedigree analysis.  相似文献   

17.
Summary New RFLP patterns are present in Japanese families with members suffering from phenylketonuria indicating a deletion at the 3 end of the PAH-gene.  相似文献   

18.
Restriction fragment length polymorphism haplotyping of mutated and normal phenylalanine hydroxylase (PAH) alleles in 49 Dutch phenylketonuria (PKU) families was performed. All mutant PAH chromosomes identified by haplotyping (n = 98) were screened for eight of the most predominant mutations. Compound heterozygosity was proven in 40 kindreds. Homozygosity was found for the IVS12nt1 mutation in 5 families, and for the R158Q and IVS10nt546 mutations in one family each. All patients from these families suffer from severe PKU, providing additional proof that these mutations are deleterious for the PAH gene. Genotypical heterogeneity was evident for mutant haplotype 1 (n = 27) carrying the mutations R261Q (n = 12), E280K (n = 4), P281L (n = 1) and unknown (n = 10), and likewise for mutant haplotype 4 (n = 30) carrying the mutations R158Q (n = 13), Y414C (n = 1) and unknown (n = 16). Mutant haplotype 3 (n = 20), in tight association with mutation IVS12nt1, appeared to be in strong linkage disequilibrium (LDE) with its normal counterpart allele (n = 4). Mutant haplotype 6 (n = 4), in tight association with the IVS10nt546 mutation, showed moderate LDE with its counterpart allele (n = I). The distribution of the mutant PAH haplotypes 1, 3 and 4 among the Dutch PKU population resembles that in other Northern and Western European countries, but it is striking that mutant haplotype 2 and its associated mutation R408W is nearly absent in The Netherlands, in strong contrast to its neighbouring countries.  相似文献   

19.
A total of 10 restriction site polymorphisms have been identified at the human phenylalanine hydroxylase locus using a full-length human phenylalanine hydroxylase cDNA clone as a hybridization probe to analyze human genomic DNA. These polymorphic patterns segregate in a Mendelian fashion and concordantly with the disease state in various PKU kindreds. The frequencies of the restriction site polymorphisms at the human phenylalanine hydroxylase locus among Caucasians are such that the observed heterozygosity in the population is 87.5%. Thus, most families with a history of classical phenylketonuria can take advantage of the genetic analysis for prenatal diagnosis and carrier detection of the hereditary disorder.  相似文献   

20.
Because defects in the phenylalanine hydroxylase gene (PAH) cause phenylketonuria (PKU), PAH was studied for normal polymorphisms and linkage disequilibrium soon after the gene was cloned. Studies in the 1980s concentrated on European populations in which PKU was common and showed that haplotype-frequency variation exists between some regions of the world. In European populations, linkage disequilibrium generally was found not to exist between RFLPs at opposite ends of the gene but was found to exist among the RFLPs clustered at each end. We have now undertaken the first global survey of normal variation and disequilibrium across the PAH gene. Four well-mapped single-nucleotide polymorphisms (SNPs) spanning approximately 75 kb, two near each end of the gene, were selected to allow linkage disequilibrium across most of the gene to be examined. These SNPs were studied as PCR-RFLP markers in samples of, on average, 50 individuals for each of 29 populations, including, for the first time, multiple populations from Africa and from the Americas. All four sites are polymorphic in all 29 populations. Although all but 5 of the 16 possible haplotypes reach frequencies >5% somewhere in the world, no haplotype was seen in all populations. Overall linkage disequilibrium is highly significant in all populations, but disequilibrium between the opposite ends is significant only in Native American populations and in one African population. This study demonstrates that the physical extent of linkage disequilibrium can differ substantially among populations from different regions of the world, because of both ancient genetic drift in the ancestor common to a large regional group of modern populations and recent genetic drift affecting individual populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号