首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peatland ecosystems have been consistent carbon (C) sinks for millennia, but it has been predicted that exposure to warmer temperatures and drier conditions associated with climate change will shift the balance between ecosystem photosynthesis and respiration providing a positive feedback to atmospheric CO2 concentration. Our main objective was to determine the sensitivity of ecosystem photosynthesis, respiration and net ecosystem production (NEP) measured by eddy covariance, to variation in temperature and water table depth associated with interannual shifts in weather during 2004–2009. Our study was conducted in a moderately rich treed fen, the most abundant peatland type in western Canada, in a region (northern Alberta) where peatland ecosystems are a significant landscape component. During the study, the average growing season (May–October) water depth declined approximately 38 cm, and temperature [expressed as cumulative growing degree days (GDD, March–October)] varied approximately 370 GDD. Contrary to previous predictions, both ecosystem photosynthesis and respiration showed similar increases in response to warmer and drier conditions. The ecosystem remained a strong net sink for CO2 with an average NEP (± SD) of 189 ± 47 g C m?2 yr?1. The current net CO2 uptake rates were much higher than C accumulation in peat determined from analyses of the relationship between peat age and cumulative C stock. The balance between C addition to, and total loss from, the top 0–30 cm depth (peat age range 0–70 years) of shallow peat cores averaged 43 ± 12 g C m?2 yr?1. The apparent long‐term average rate of net C accumulation in basal peat samples was 19–24 g C m?2 yr?1. The difference between current rates of net C uptake and historical rates of peat accumulation is likely a result of vegetation succession and recent increases in tree establishment and productivity.  相似文献   

2.
Hot spots of CH4 emissions are a typical feature of pristine peatlands at the microsite and landscape scale. To determine whether rewetting and lake construction in a cutaway peatland would result in the re‐creation of hot spots, we first measured CH4 fluxes over a 2‐year period with static chambers and estimated annual emissions. Second, to assess whether rewetting and lake creation would produce hot spots at the landscape level, we hypothesized a number of alternative land use scenarios for the peatland following the cessation of peat extraction. Using the results from this study and other studies from literature, we calculated the global warming potential (GWP) of each scenario and the respective contribution of CH4. The results showed that hot spots of CH4 fluxes were observed as a consequence of microsite‐specific differences in water table (WT) position and plant productivity. CH4 fluxes were closely related to peat temperature at 10 cm depth and WT position. Annual emissions ranged from 4.3 to 38.8 g CH4 m?2 yr?1 in 2002 and 3.2 to 28.8 g CH4 m?2 yr?1 in 2003. The scenario results suggest that lake creation is likely to result in the re‐creation of a hot spot at the landscape level. However, the transition from cutaway to wetland ecosystem may lead to a reduction in the GWP of the peatland.  相似文献   

3.
We measured the net ecosystem exchange (NEE) and respiration rates and modeled the photosynthesis and respiration dynamics in a cutover bog in the Swiss Jura Mountains during one growing season at three stages of regeneration (29, 42, and 51 years after peat cutting; coded sites A, B, and C) to determine if reestablishment of Sphagnum suffices to restore the C‐sequestration function. From the younger to the older stage Sphagnum cover increased, while net primary Sphagnum production over the growing season decreased (139, 82, and, 67 g m?2 y?1 for A, B, and C respectively), and fen plant species were replaced by bog species. According to our NEE estimations, over the vegetation period site A was a net CO2‐C source emitting 40 g CO2‐C/m2 while sites B and C were accumulating CO2‐C, on average 222 and 209 g CO2‐C/m2, respectively. These differences are due to the higher respiration in site A during the summer, suggesting that early regeneration stages may be more sensitive to a warmer climate. Methane fluxes increased from site A to C in parallel with Eriophorum vaginatum cover and vascular plant leaf area. Our results show that reestablishing a Sphagnum cover is not sufficient to restore a CO2‐sequestrating function but that after circa 50 years the ecosystem may naturally regain this function over the growing season.  相似文献   

4.
Fenner  N.  Ostle  N.  Freeman  C.  Sleep  D.  Reynolds  B. 《Plant and Soil》2004,259(1-2):345-354
Over half of the world's peat originated from Sphagnum, representing 10–15% of the terrestrial carbon stock. However, information regarding the release and exudation of organic carbon by living Sphagnum plants into the surface peat is scarce. In this study, we examined the contribution of recent Sphagnum subnitens (Russ. and Warnst.) photosynthate carbon to the peatland dissolved organic carbon (DOC) pool. This was done using a 13CO2 pulse-chase experimental approach during the growing season. Despite the importance of Sphagnum in long-term carbon accumulation, results showed that the Sphagnum community rapidly contributes recently synthesized carbon to the peatland DOC pool. We estimate that by 4 h up to 4% of the total DOC in peat leachate was derived from 13CO2 pulse labelling at ambient CO2 concentrations. Nonetheless, a huge 64% of the 13C initially assimilated by photosynthesis was retained in Sphagnum subnitens for 23 days after labelling, consistent with the role of Sphagnum in peatland carbon accumulation. The majority of 13C loss as respired CO2 came within the few days post 13CO2 labelling, suggesting that it was derived from plant respiration of photosynthates.  相似文献   

5.
Nitrogen (N) nutrition in pristine peatlands relies on the natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation and its significance for N cycling, plant productivity, and peat buildup are mostly associated with the presence of Sphagnum mosses. Here, we report high nonsymbiotic N2‐fixation rates in two pristine Patagonian bogs with diversified vegetation and natural N deposition. Nonsymbiotic N2 fixation was measured in samples from 0 to 10, 10 to 20, and 40 to 50 cm depth using the 15N2 assay as well as the acetylene reduction assay (ARA). The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Based on the 15N2 assay, high nonsymbiotic N2‐fixation rates of 0.3–1.4 μmol N2 g?1 day?1 were found down to 50 cm under micro‐oxic conditions (2 vol.%) in samples from plots covered by Sphagnum magellanicum or by vascular cushion plants, latter characterized by dense and deep aerenchyma roots. Peat N concentrations point to greater potential of nonsymbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth rather reflects the potential during dry periods or low water level when oxygen penetrates the top peat layer and triggers peat mineralization. Natural abundance of the 15N isotope of live Sphagnum (5.6 δ‰) from 0 to 10 cm points to solely N uptake from atmospheric deposition and nonsymbiotic N2 fixation. A mean 15N signature of ?0.7 δ‰ of peat from the cushion plant plots indicates additional N supply from N mineralization. Our findings suggest that nonsymbiotic N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.  相似文献   

6.
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant‐removal experiment in two Sphagnum‐dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO2 radiocarbon (bomb‐14C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change.  相似文献   

7.
The lowland peatlands of south‐east Asia represent an immense reservoir of fossil carbon and are reportedly responsible for 30% of the global carbon dioxide (CO2) emissions from Land Use, Land Use Change and Forestry. This paper provides a review and meta‐analysis of available literature on greenhouse gas fluxes from tropical peat soils in south‐east Asia. As in other parts of the world, water level is the main control on greenhouse gas fluxes from south‐east Asian peat soils. Based on subsidence data we calculate emissions of at least 900 g CO2 m?2 a?1 (~250 g C m?2 a?1) for each 10 cm of additional drainage depth. This is a conservative estimate as the role of oxidation in subsidence and the increased bulk density of the uppermost drained peat layers are yet insufficiently quantified. The majority of published CO2 flux measurements from south‐east Asian peat soils concerns undifferentiated respiration at floor level, providing inadequate insight on the peat carbon balance. In contrast to previous assumptions, regular peat oxidation after drainage might contribute more to the regional long‐term annual CO2 emissions than peat fires. Methane fluxes are negligible at low water levels and amount to up to 3 mg CH4 m?2 h?1 at high water levels, which is low compared with emissions from boreal and temperate peatlands. The latter emissions may be exceeded by fluxes from rice paddies on tropical peat soil, however. N2O fluxes are erratic with extremely high values upon application of fertilizer to wet peat soils. Current data on CO2 and CH4 fluxes indicate that peatland rewetting in south‐east Asia will lead to substantial reductions of net greenhouse gas emissions. There is, however, an urgent need for further quantitative research on carbon exchange to support the development of consistent policies for climate change mitigation.  相似文献   

8.
  • Sphagnum biomass is a promising material that could be used as a substitute for peat in growing media and can be sustainably produced by converting existing drainage‐based peatland agriculture into wet, climate‐friendly agriculture (paludiculture). Our study focuses on yield maximization of Sphagnum as a crop.
  • We tested the effects of three water level regimes and of phosphorus or potassium fertilization on the growth of four Sphagnum species (S. papillosum, S. palustre, S. fimbriatum, S. fallax). To simulate field conditions in Central and Western Europe we carried out a glasshouse experiment under nitrogen‐saturated conditions.
  • A constant high water table (remaining at 2 cm below capitulum during growth) led to highest productivity for all tested species. Water table fluctuations between 2 and 9 cm below capitulum during growth and a water level 2 cm below capitulum at the start but falling relatively during plant growth led to significantly lower productivity. Fertilization had no effect on Sphagnum growth under conditions with high atmospheric deposition such as in NW Germany (38 kg N, 0.3 kg P, 7.6 kg K·ha?1·year?1).
  • Large‐scale maximization of Sphagnum yields requires precise water management, with water tables just below the capitula and rising with Sphagnum growth. The nutrient load in large areas of Central and Western Europe from atmospheric deposition and irrigation water is high but, with an optimal water supply, does not hamper Sphagnum growth, at least not of regional provenances of Sphagnum.
  相似文献   

9.
We studied vegetation dynamics at peatlands, differing in their climate, land use management history and vegetation community in Ireland and Finland over a two-year period. Our aim was to develop a species-specific method to be used to (1) describe the seasonal dynamics of green (photosynthetic) area (GA) of the vegetation and (2) incorporate these changes into CO2 exchange models. The extent of temporal and spatial variation between and within communities indicated the need for a two-step calculation approach for each community. Firstly, at biweekly to monthly intervals, GA of all species within a range of vascular plant communities was estimated by non-destructive field measurements. Gaussian or log-normal models were fitted to describe the seasonal dynamics of each species. Secondly, an estimate of community vascular green area (VGA) was obtained by summing the modelled daily GA of all species within the community. The highest values of VGA (2.1–6.0 m2 m−2) occurred within the reed communities at the rewetted cutaway peatland in Ireland and the lowest at the ombrotrophic lawn communities in Finland (0.5–1.0 m2 m−2). The relationship between light saturated gross photosynthesis (P G) and VGA was either linear or hyperbolic depending on the degree of self-shading that occurred within each community. The addition of the VGA term into P G models improved the explaining power of the model by 57.6, 24.5 and 23% within the Typha latifolia, Phalaris arundinacea and Eriophorum angustifolium/Carex rostrata communities, respectively. VGA proved useful in recording the seasonal development of a wide range of peatland vascular plant communities over geographically and climatically different regions.  相似文献   

10.
A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.  相似文献   

11.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

12.
Peatlands in Australia and New Zealand are composed mainly of Restionaceous and Cyperaceous peats, although Sphagnum peat is common in wetter climates (Mean Annual Precipitation > 1,000 mm) and at higher altitudes (>1,000 m). Experimental trials in two contrasting peatland types—fire‐damaged Sphagnum peatlands in the Australian Alps and cutover restiad bogs in lowland New Zealand—revealed similar approaches to peatland restoration. Hydrological restoration and rehydration of drying peats involved blocking drainage ditches to raise water tables or, additionally in burnt Sphagnum peatlands, peat‐trenching, and the use of sterilized straw bales to form semipermanent “dam walls” and barriers to spread and slow surface water movement. Recovery to the predisturbance vegetation community was most successful once protective microclimates had been established, either artificially or naturally. Specifically, horizontally laid shadecloth resulted in Sphagnum cristatum regeneration rates and biomass production 3–4 times that of unshaded vegetation (Australia), and early successional nurse shrubs facilitated establishment of Sporadanthus ferrugineus (New Zealand) within 2–3 years. On severely burnt or cutover sites, a patch dynamic approach using transplants of Sphagnum or creation of restiad peat “islands” markedly improved vegetation recovery. In New Zealand, this approach has been scaled up to whole mine‐site restoration, in which the newly vegetated islands provide habitat and seed sources for plants and invertebrates to spread onto surrounding areas. Although a vegetation cover can be established relatively rapidly in both peatland types, restoration of invertebrate communities, ecosystem processes, and peat hydrological function and accumulation may take many decades.  相似文献   

13.
The Mer Bleue peatland is a large ombrotrophic bog with hummock-lawn microtopography, poor fen sections and beaver ponds at the margin. Average growing-season (May–October) fluxes of methane (CH4) measured in 2002–2003 across the bog ranged from less than 5 mg m−2 d−1 in hummocks, to greater than 100 mg m−2 d−1 in lawns and ponds. The average position of the water table explained about half of the variation in the season average CH4 fluxes, similar to that observed in many other peatlands in Canada and elsewhere. The flux varied most when the water table position ranged between −15 and −40 cm. To better establish the factors that influence this variability, we measured CH4 flux at approximately weekly intervals from May to November for 5 years (2004–2008) at 12 collars representing the water table and vegetation variations typical of the peatland. Over the snow-free season, peat temperature is the dominant correlate and the difference among the collars’ seasonal average CH4 flux is partially dependent on water table position. A third important correlate on CH4 flux is vegetation, particularly the presence of Eriophorum vaginatum, which increases CH4 flux, as well as differences in the potential of the peat profile to produce and consume CH4 under anaerobic and aerobic conditions. The combination of peat temperature and water table position with vegetation cover was able to explain approximately 44% of the variation in daily CH4 flux, based on 1097 individual measurements. There was considerable inter-annual variation in fluxes, associated with varying peat thermal and water table regimes in response to variations in weather, but also by variations in the water level in peripheral ponds, associated with beaver dam activity. Raised water level in the beaver ponds led to higher water tables and increased CH4 emission in the peatland.  相似文献   

14.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

15.
The surface of bogs is commonly patterned and composed of different vegetation communities, defined by water level. Carbon dioxide (CO2) dynamics vary spatially between the vegetation communities. An understanding of the controls on the spatial variation of CO2 dynamics is required to assess the role of bogs in the global carbon cycle. The water level gradient in a blanket bog was described and the CO2 exchange along the gradient investigated using chamber based measurements in combination with regression modelling. The aim was to investigate the controls on gross photosynthesis (PG), ecosystem respiration (RE) and net ecosystem CO2 exchange (NEE) as well as the spatial and temporal variation in these fluxes. Vegetation structure was strongly controlled by water level. The species with distinctive water level optima were separated into the opposite ends of the gradient in canonical correspondence analysis. The number of species and leaf area were highest in the intermediate water level range and these communities had the highest PG. Photosynthesis was highest when the water level was 11 cm below the surface. Ecosystem respiration, which includes decomposition, was less dependent on vegetation structure and followed the water level gradient more directly. The annual NEE varied from −115 to 768 g CO2 m−2, being lowest in wet and highest in dry vegetation communities. The temporal variation was most pronounced in PG, which decreased substantially during winter, when photosynthetic photon flux density and leaf area were lowest. Ecosystem respiration, which is dependent on temperature, was less variable and wintertime RE fluxes constituted approximately 24% of the annual flux.  相似文献   

16.
Ecosystem respiration (ER) is an important but poorly understood part of the carbon (C) budget of peatlands and is controlled primarily by the thermal and hydrologic regimes. To establish the relative importance of these two controls for a large ombrotrophic bog near Ottawa, Canada, we analyzed ER from measurements of nighttime net ecosystem exchange of carbon dioxide (CO2) determined by eddy covariance technique. Measurements were made from May to October over five years, 1998 to 2002. Ecosystem respiration ranged from less than 1 μmol CO2 m−2 s−1 in spring (May) and fall (late October) to 2–4 μmol CO2 m−2 s−1 during mid-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0.62). Q10 between 5° to 15°C varied from 2.2 to 4.2 depending upon the choice of depth where temperature was measured and location within a hummock or hollow. There was only a weak relationship between ER and water-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in production due to drying from below a depth of 30 cm. We postulate that the weak correlation between ER and water table position in this peatland is primarily a function of the bog being relatively dry, with water table varying between 30 and 75 cm below the hummock tops. The dryness gives rise to a complex ER response to water table involving i) compensations between production of CO2 in the upper and lower peat profile as the water table falls and ii) the importance of autotrophic respiration, which is relatively independent of water-table position.  相似文献   

17.
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual—Norway spruce with average soil water table of ?40 cm; (2) willow with groundwater at ?20 cm; (3) reed canary grass with groundwater at ?10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high‐resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree‐ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO2eq ha?1 year?1, respectively. The total soil emissions (including litter and peat respiration CO2 + N2O + CH4) were 33.1, 19.3, 15.3, and 11.0 Mg CO2eq ha?1 year?1, respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost–benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy‐making.  相似文献   

18.
The response of peatlands to changes in the climatic water budget is crucial to predicting potential feedbacks on the global carbon (C) cycle. To gain insight on the patterns and mechanisms of response, we linked a model of peat accumulation to a model of peatland hydrology, then applied these models to empirical data spanning the past 5000 years for the large mire Store Mosse in southern Sweden. We estimated parameters for C sequestration and height growth by fitting the peat accumulation model to two age profiles. Then, we used independent reconstruction of climate wetness and model reconstruction of bog height to examine changes in peatland hydrology. Reconstructions of C sequestration showed two distinct patterns of behaviour: abrupt increases associated with major transitions in vegetation and dominant Sphagnum species (fuscum, rubellum–fuscum and magellanicum stages), and gradual decreases associated with increasing humification of newly formed peat. Carbon sequestration rate ranged from a minimum of 14 to a maximum of 72 g m?2 yr?1, with the most rapid changes occurring in the past 1000 years. Vegetation transitions were associated with periods of increasing climate wetness during which the hydrological requirement for increased seepage loss was met by rise of the water table closer to the peatland surface, with the indirect result of enhancing peat formation. Gradual decline in C sequestration within each vegetation stage resulted from enhanced litter decay losses from the near‐surface layer. In the first two vegetation stages, peatland development (i.e., increasing surface gradient) and decreasing climate wetness drove a gradual increase in thickness of the unsaturated, near‐surface layer, reducing seepage water loss and peat formation. In the most recent vegetation stage, the surface diverged into a mosaic of wet and dry microsites. Despite a steady increase in climate wetness, C sequestration declined rapidly. The complexity of response to climate change cautions against use of past rates to estimate current or to predict future rates of peatland C sequestration. Understanding interactions among hydrology, surface structure and peat formation are essential to predicting potential feedback on the global C cycle.  相似文献   

19.
Measurements of the carbon (δ13Cm) and oxygen (δ18Om) isotope composition of C3 plant tissue provide important insights into controls on water‐use efficiency. We investigated the causes of seasonal and inter‐annual variability in water‐use efficiency in a grassland near Lethbridge, Canada using stable isotope (leaf‐scale) and eddy covariance measurements (ecosystem‐scale). The positive relationship between δ13Cm and δ18Om values for samples collected during 1998–2001 indicated that variation in stomatal conductance and water stress‐induced changes in the degree of stomatal limitation of net photosynthesis were the major controls on variation in δ13Cm and biomass production during this time. By comparison, the lack of a significant relationship between δ13Cm and δ18Om values during 2002, 2003 and 2006 demonstrated that water stress was not a significant limitation on photosynthesis and biomass production in these years. Water‐use efficiency was higher in 2000 than 1999, consistent with expectations because of greater stomatal limitation of photosynthesis and lower leaf ci/ca during the drier conditions of 2000. Calculated values of leaf‐scale water‐use efficiency were 2–3 times higher than ecosystem‐scale water‐use efficiency, a difference that was likely due to carbon lost in root respiration and water lost during soil evaporation that was not accounted for by the stable isotope measurements.  相似文献   

20.
Membrane inlet mass spectrometry was used to monitor dissolved gas concentrations (CO2, CH4 and O2) in a mesotrophic peat core from Kopparås, Sweden. 1 A comparison of depth profiles (down to 22 cm) with an ombrotrophic peat core (Ellergower, SW Scotland) investigated previously, revealed major differences in gas concentrations. Thus methane reached concentrations more than twice as high (800 μM) at depths greater than 12 cm in the Kopparås core. As shown previously, the primary determinant of the depth of the oxic zone is the level of the water table. Whereas in the Scottish cores, mass spectrometric detectability of O2 was confined to the first 3 cm below this level, in the Swedish core penetration of O2 was greater (7 cm). CO2 profiles were similar in cores from both locations. 2 A thick layer of Sphagnum mosses dominated the plant cover of the Swedish peat core. A poorly developed deep root system, as distinct from that of the vascular plant cover in Scottish cores, diminished gas exchange rates, and presumably aerobic methane oxidation at depth around roots. These characteristics may contribute to the development of discontinuities in gas profiles at depths greater 15 cm as upward gas transport is established predominantly by diffusion and/or ebullition in the Swedish core. 3 Monitoring gas concentrations at the peat surface and at 2 cm depth after changing water tables showed a delayed response of approximately 4 days as a result of the high water content and moisture‐regulating capacity of mosses. 4 Recovery processes at 2 cm depth after raising the water table revealed final production rates of dissolved CO2 and CH4 in the peat pore water between 0.8 and 4.4 μmol h?1 L?1 and between 0.1 and 1.7 μmol h?1 L?1, respectively. Higher production rates were found during the day, indicating a diurnal rhythm due to plant photosynthetic activity even at the low values of photosynthetically active radiation (PAR: 110 μmol s?1 m?2) used in the experimental set‐up. 5 In the water‐logged mesotrophic Kopparås core changes of dissolved gas concentrations (DGC) at 3 and 14 cm depth were surface temperature‐dependent rather than light dependent. This suggests that changes of air temperature alters the covering vegetation to increase the conductivity for dissolved gases through vascular plants and to facilitate gas transport by diffusion and/or ebullition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号