首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the role of Ca2+in regulation of theNa+/H+exchanger (NHE1), we used CCL-39 fibroblasts overexpressing theNa+/Ca2+exchanger (NCX1). Expression of NCX1 markedly inhibited the transient cytoplasmic Ca2+ rise andlong-lasting cytoplasmic alkalinization (60-80% inhibition) induced by -thrombin. In contrast, coexpression of NCX1 did not inhibit this alkalinization in cells expressing the NHE1 mutant withthe calmodulin (CaM)-binding domain deleted (amino acids 637-656),suggesting that the effect of NCX1 transfection involves Ca2+-CaM binding. Expression ofNCX1 only slightly inhibited platelet-derived growth factor BB-inducedalkalinization and did not affect hyperosmolarity- or phorbol12-myristate 13-acetate-induced alkalinization. Downregulation ofprotein kinase C (PKC) inhibited thrombin-induced alkalinization partially in control cells and abolished it completely inNCX1-transfected cells, suggesting that the thrombin effect is mediatedexclusively via Ca2+ and PKC. Onthe other hand, deletion mutant study revealed that PKC-dependentregulation occurs through a small cytoplasmic segment (amino aids566-595). These data suggest that a mechanism involving directCa2+-CaM binding lasts for arelatively long period after agonist stimulation, despite apparentshort-lived Ca2+ mobilization, andfurther support our previous conclusion that Ca2+- and PKC-dependent mechanismsare mediated through distinct segments of the NHE1 cytoplasmic domain.

  相似文献   

2.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

3.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology.  相似文献   

4.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   

5.
Trigger Ca(2+) is considered to be the Ca(2+) current through the L-type Ca(2+) channel (LTCC) that causes release of Ca(2+) from the sarcoplasmic reticulum. However, cell contraction also occurs in the absence of the LTCC current (I(Ca)). In this article, we investigate the contribution of the Na(+)/Ca(2+) exchanger (NCX) to the trigger Ca(2+). Experimental data from rat cardiomyocytes using confocal microscopy indicating that inhibition of reverse mode Na(+)/Ca(2+) exchange delays the Ca(2+) transient by 3-4 ms served as a basis for the mathematical model. A detailed computational model of the dyadic cleft (fuzzy space) is presented where the diffusion of both Na(+) and Ca(2+) is taken into account. Ionic channels are included at discrete locations, making it possible to study the effect of channel position and colocalization. The simulations indicate that if a Na(+) channel is present in the fuzzy space, the NCX is able to bring enough Ca(2+) into the cell to affect the timing of release. However, this critically depends on channel placement and local diffusion properties. With fuzzy space diffusion in the order of four orders of magnitude lower than in water, triggering through LTCC alone was up to 5 ms slower than with the presence of a Na(+) channel and NCX.  相似文献   

6.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.  相似文献   

7.
Summary This communication reports the kinetics of the Na+/ Ca2+ exchanger and of the plasma membrane (PM) Ca2+ pump of the intact human platelet. The kinetic properties of these two systems were deduced by studying the rate of Ca2+ extrusion and its Na+ dependence for concentrations of cytoplasmic free Ca2+ ([Ca2+]cyt) in the 1–10-m range. The PM Ca2+ATPase was previously characterized (Johansson, J.S. Haynes, D.H. 1988. J. Membrane Biol. 104:147–163) for [Ca2+]cyt] 1.5 m with the fluorescent Ca2+ indicator quin2 (K d= 115 nm). That study determined that the PM Ca2+ pump in the basal state has a V max = 0.098 mm/min, a K m= 80 nm and a Hill coefficient = 1.7. The present study extends the measurable range of [Ca2+]cyt with the intracellular Ca2+ probe, rhod2 (K d= 500 nm), which has almost a fivefold lower affinity for Ca2+. An Appendix also describes the Mg2+ and pH dependence of the K dand fluorescence characteristics of the commercially available dye, which is a mixture of two molecules. Rates of active Ca2+ extrusion were determined by two independent methods which gave good agreement: (i) by measuring Ca2+ extrusion into a Ca2+-free medium (above citation) or (ii) by the newly developed ionomycin short-circuit method, which determines the ionomycin concentration necessary to short circuit the PM Ca2+ extrusion systems. Absolute rates of extrusion were determined by knowledge of how many Ca2+ ions are moved by ionomycin per minute. The major findings are as follows: (i) The exchanger is saturable with respect to Ca2+ with a K m= 0.97 ± 0.31 m and Vmax = 1.0 ± 0.6 mm/ min. (ii) At high [Ca2+]cyt, the exchanger works at a rate 10 times as large as the basal V max of the PM Ca2+ extrusion pump. (iii) The exchanger can work in reverse after Na+ loading of the cytoplasm by monensin. (iv) The PM Ca2+ extrusion pump is activated by exposure to [Ca2+]cyt 1.5 m for 20–50 sec. Activation raises the pump V max to 1.6 ± 0.6 mm/min and the K mto 0.55 ± 0.24 m. (v) The Ca2+ buffering capacity of the cytoplasm is 3.6 mm in the 0.1 to 3 m range of [Ca2+]cyt. In summary, the results show that the human platelet can extrude Ca2+ very rapidly at high [Ca2+]cyt. Both the Na+/Ca2+ exchanger and Ca2+ pump activation may prevent inappropriate platelet activation by marginal stimuli.Abbreviations cAMP cyclic adenosine 3,5-monophosphate - cGMP cyclic guanosine 3,5,-monophosphate - Ca-CAM calcium calmodulin; - DT dense tubules - B intrinsic cytoplasmic Ca2+ binding sites - R rhod2 or 5-(3,6-bis(dimethylamino)xanth-9-yl)-1-(2-amino-4-hy droxy lphenoxy)-2-(2-amino-5-methylphen- oxy)ethane-N,N,NN-tetraacetic acid - [Ca2+]cyt cytoplasmic Ca2+ activity - quin2 2-[[2-bis[(carboxymethyl)amino]-5-methyl-phenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline - V or Vextrusion true rate of Ca2+ extrusion - fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,NN-tetraacetic acid - AM acetoxymethyl ester - DMSO dimethylsulfoxide - CTC chlortetracycline - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N,N,N- tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - NMDG N-methyl-d-glucamine - PIPES 1,4-piperazine-bis-(ethanesulfonic acid) - HPLC high performance liquid chromatography - I fraction of high-affinity rhod2 complexed with Ca2+ - F the observed fluorescence - Fmin the minimal fluorescence observed in the absence of Ca2+ - Fmax the maximal fluorescence observed when the dye is saturated with Ca2+ - X1 the fraction of high-affinity dye - K d,1 dissociation constant of high-affinity dye - K d,2 dissociation constant of the low-affinity dye - -d1/dt rate of Ca2+ removal from the rhod2-Ca complex; - -dF/dt the slope representing the absolute rate of fluorescence decrease in a progress curve - Fmax (Fmax — Fmin)cyt difference between maximal and minimal fluorescence for cytoplasmic high affinity form of rhod2 - F50 fluorescence of the high-affinity form ofrhod2for[Ca2+]cyt=50 nM - [Ca2+]0 external Ca2+concentration - K p proportionality constant between the total number of Ca2+ ions moved and the change in high-affinity rhod2 complexation to Ca2 - (d[Ca2+]cyt, T)/dt rate of Ca2+ influx obtained with maximal levels of ionomycin - kleak rate constant for passive inward Ca2+ leakage - kinno rate constant for ionomycin-mediated Ca2+ influx - T total - [rhod2]cyt,T total intracellular rhod2 concentration - [quin2]cyt,T total intracellular quin2 concentration - [B]T total cytoplasmic buffering capacity - A[Ca2+]cyt,T total number of Ca2+ ions moved into the cytoplasm - [rhod2-Ca]cyt, T change in concentration of total intracellular high-affinity rhod2 complexed to Ca2+ - [B-Ca]T change in concentration of total cytoplasmic binding sites complexed to Ca2+ - [quin2]cyt, T change in concentration of total intracellular quinl complexed to Ca2+ - change in the degree of intracellular quin2 saturation - 1 change in degree of saturation of cytoplasmic high-affinity rhod2 - 1-/t rate of change in degree of saturation of cytoplasmic high affinityrhod2 - Vobs observed rate of Ca2+ removal from the rhod2-Ca complex - V8.3 m the rate of Ca2+ removal from the high affinity rhod2-Ca complex at [Ca2+]cyt = 8.3 m - /t rate of change in of the degree of quin2 saturation - [Ca2+]cytT/t initial linear rate of ionomycin-mediated Ca2+ influx - EC50 effective concentration giving a half-maximal effect - [Na+]cyt cytoplasmic Na+ activity - CAM calmodulin - ACN acetonitrile - TFA trifuloroacetic acid  相似文献   

8.
An isoform of the Na(+)/Ca(2+) exchanger (SDNCX1.10) was cloned from mesangial cells of Sprague-Dawley rat. Regulation of this isoform was compared to two other clones that were derived from the Dahl/Rapp salt sensitive (SNCX) and salt resistant rat (RNCX). All isoforms differ at the alternative splice site and at amino acid 218 for SNCX. PKC activates RNCX but not SNCX while SDNCX1.10 was also activated by PKC. Regulation of exchanger activities by intracellular calcium ([Ca(2+)](i)), pH, and kinases was assessed using Na-dependent (45)Ca(2+) uptake assays in OK-PTH cells expressing the vector, RNCX, SNCX, or SDNCX1.10. [Ca(2+)](i) was elevated from 50 to 125 nM (n = 4) with thapsigargin (40 nM) and reduced from 50 to 29 nM (n = 4) and 18 nM (n = 4) with 10 or 20 microM BAPTA, respectively. RNCX was active at all three [Ca(2+)](i) while SNCX and SDNCX1.10 were only active at lower [Ca(2+)](i). Varying extracellular pH (pH(e), without nigericin) or pH(e) and intracellular pH (pH(i), with 10 microM nigericin) from pH 7.4 to 6.2, 6.8, or 8.0 showed that SNCX activity was attenuated at both low and high pHs. SDNCX1.10 activity was attenuated only at pH 6.2 and 6.8 (with or without nigericin) while RNCX activity was attenuated at pH 6.2 (with or without nigericin) and pH 6.8 (with nigericin). Finally, only SDNCX1.10 activity was stimulated by 250 microM CPT-cAMP or 250 microM DB-cGMP treatment. Thus the differential regulation of [Ca(2+)](i) by these exchangers is dependent upon the pattern of cellular Na(+)/Ca(2+) exchanger isoform expression.  相似文献   

9.
Membrane-intrinsic transport systems play an essential role in intracellular Ca2+ homeostasis. ATP-driven Ca2+ pumps and carrier-mediated Na+/Ca2+ exchangers are the two specific Ca2+ transporting systems mainly responsible for Ca2+ extrusion across the plasma membrane. Ca2+ pumps operate in all eukaryotic cell types and are characterized by their high Ca2+ affinity and their specific regulation by direct interaction with Ca2+/calmodulin. Na+/Ca2+ exchangers are particularly abundant in excitable tissues and are responsible for the bulk Ca2+ efflux in these tissues. Recent success in the molecular characterization of the pumps has led to the determination of complete amino acid sequences for several isoforms and has allowed the identification and topological assignment of important functional and regulatory domains. Genetic evidence indicates that mammalian Ca2+ pump diversity is generated from a multigene family and via alternative RNA splicing. Different isoforms may vary in their regulatory properties, presumably reflecting different physiological requirements of the tissues of their expression. Although the molecular characterization of Na+/Ca2+ exchangers is not as far advanced as that of the pumps, recent studies have established detailed kinetic, stoichiometric and regulatory properties of these systems. Together with advances in expression cloning methods these studies promise to result in a rapid improvement of our knowledge of the functional properties of these ion transporters on a molecular level.  相似文献   

10.
Summary The presence of a coupled Na+/Ca2+ exchange system has been demonstrated in plasma membrane vesicles from rat pancreatic acinar cells. Na+/Ca2+ exchange was investigated by measuring45Ca2+ uptake and45Ca2+ efflux in the presence of sodium gradients and at different electrical potential differences across the membrane (=) in the presence of sodium. Plasma membranes were prepared by a MgCl2 precipitation method and characterized by marker enzyme distribution. When compared to the total homogenate, the typical marker for the plasma membrane, (Na++K+)-ATPase was enriched by 23-fold. Markers for the endoplasmic reticulum, such as RNA and NADPH cytochromec reductase, as well as for mitochondria, the cytochromec oxidase, were reduced by twofold, threefold and 10-fold, respectively. For the Na+/Ca2+ countertransport system, the Ca2+ uptake after 1 min of incubation was half-maximal at 0.62 mol/liter Ca2+ and at 20 mmol/liter Na+ concentration and maximal at 10 mol/liter Ca2+ and 150 mmol/liter Na+ concentration, respecitively. When Na+ was replaced by Li+, maximal Ca2+ uptake was 75% as compared to that in the presence of Na+. Amiloride (10–3 mol/liter) at 200 mmol/liter Na+ did not inhibit Na+/Ca2+ countertransport, whereas at low Na+ concentration (25 mmol/liter) amiloride exhibited dose-dependent inhibition to be 62% at 10–2 mol/liter. CFCCP (10–5 mol/liter) did not influence Na+/Ca2+ countertransport. Monensin inhibited dose dependently; at a concentration of 5×10–6 mol/liter inhibition was 80%. A SCN or K+ diffusion potential (=), being positive at the vesicle inside, stimulated calcium uptake in the presence of sodium suggesting that Na+/Ca2+ countertransport operates electrogenically, i.e. with a stoichiometry higher than 2 Na+ for 1 Ca2+. In the absence of Na+, did not promote Ca2+ uptake. We conclude that in addition to ATP-dependent Ca2+ outward transport as characterized previously (E. Bayerdörffer, L. Eckhardt, W. Haase & 1. Schulz, 1985,J. Membrane Biol. 84:45–60) the Na+/Ca2+ countertransport system, as characterized in this study, represents a second transport system for the extrusion of calcium from the cell. Furthermore, the high affinity for calcium suggests that this system might participate in the regulation of the cytosolic free Ca2+ level.  相似文献   

11.
Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+]i) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca2]i concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+]i increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.  相似文献   

12.
Protein kinase D inhibits plasma membrane Na+/H+ exchanger activity   总被引:3,自引:0,他引:3  
The regulation of plasma membraneNa+/H+exchanger (NHE) activity by protein kinase D (PKD), a novel proteinkinase C- and phorbol ester-regulated kinase, was investigated. Todetermine the effect of PKD on NHE activity in vivo, intracellular pH(pHi) measurements were made inCOS-7 cells by microepifluorescence using the pH indicator cSNARF-1.Cells were transfected with empty vector (control), wild-type PKD, orits kinase-deficient mutant PKD-K618M, together with green fluorescentprotein (GFP). NHE activity, as reflected by the rate of acid efflux(JH), wasdetermined in single GFP-positive cells following intracellularacidification. Overexpression of wild-type PKD had no significanteffect on JH(3.48 ± 0.25 vs. 3.78 ± 0.24 mM/min in control atpHi 7.0). In contrast,overexpression of PKD-K618M increasedJH (5.31 ± 0.57 mM/min at pHi 7.0;P < 0.05 vs. control). Transfectionwith these constructs produced similar effects also in A-10 cells,indicating that native PKD may have an inhibitory effect on NHE in bothcell types, which is relieved by a dominant-negative action ofPKD-K618M. Exposure of COS-7 cells to phorbol ester significantlyincreased JH in control cells but failed to do so in cells overexpressing either wild-type PKD (due to inhibition by the overexpressed PKD) or PKD-K618M(because basal JHwas already near maximal). A fusion protein containing the cytosolicregulatory domain (amino acids 637-815) of NHE1 (the ubiquitousNHE isoform) was phosphorylated in vitro by wild-type PKD, but with lowstoichiometry. These data suggest that PKD inhibits NHE activity,probably through an indirect mechanism, and represents a novel pathwayin the regulation of the exchanger.

  相似文献   

13.
Summary The relative contributions of the Na+/Ca2+ exchange and the plasma membrane Ca2+ pump to active Ca2+ efflux from stimulated rat pancreatic acini were studied. Na+ gradients across the plasma membrane were manipulated by loading the cells with Na+ or suspending the cells in Na+-free media. The rates of Ca2+ efflux were estimated from measurements of [Ca2+] i using the Ca2+-sensitive fluorescent dye Fura 2 and45Ca efflux. During the first 3 min of cell stimulation, the pattern of Ca2+ efflux is described by a single exponential function under control, Na+-loaded, and Na+-depleted conditions. Manipulation of Na+ gradients had no effect on the hormone-induced increase in [Ca2+] i . The results indicate that Ca2+ efflux from stimulated pancreatic acinar cells is mediated by the plasma membrane Ca2+ pump. The effects of several cations, which were used to substitute for Na+, on cellular activity were also studied. Choline+ and tetramethylammonium+ (TMA+) released Ca2+ from intracellular stores of pancreatic acinar, gastric parietal and peptic cells. These cations also stimulated enzyme and acid secretion from the cells. All effects of these cations were blocked by atropine. Measurements of cholecystokinin-octapeptide (CCK-OP)-stimulated amylase release from pancreatic acini, suspended in Na+, TMA+, choline+, or N-methyl-d-glucamine+ (NMG+) media containing atropine, were used to evaluate the effect of the cations on cellular function. NMG+, choline+, and TMA+ inhibited amylase release by 55, 40 and 14%, respectively. NMG+ also increased the Ca2+ permeability of the plasma membrane. Thus, to study Na+ dependency of cellular function, TMA+ is the preferred cation to substitute for Na+. The stimulatory effect of TMA+ can be blocked by atropine.  相似文献   

14.
Spatial and temporal regulation of Ca(2+) signaling require the assembly of multiprotein complexes linking molecules involved in Ca(2+) influx, sensing, buffering, and extrusion. Recent evidence indicates that plasma membrane Ca(2+) ATPases (PMCAs) participate in the control of local Ca(2+) fluxes, but the mechanism of multiprotein complex formation of specific PMCAs is poorly understood. Using the PMCA2b COOH-terminal tail as bait in a yeast two-hybrid screen, we identified the PSD-95, Dlg, ZO-1 (PDZ) domain-containing Na(+)/H(+) exchanger regulatory factor-2 (NHERF2) as an interacting partner. Protein pull-down and coimmunoprecipitation experiments using recombinant PMCA2b and PMCA4b as well as NHERF1 and NHERF2 showed that the interaction of PMCA2b with NHERF2 was specific and selective. PMCA4b did not interact with either of the NHERFs, and PMCA2b selectively preferred NHERF2 over NHERF1. Green fluorescent protein-tagged PMCA2b was expressed at the apical membrane in Madin-Darby canine kidney epithelial cells, where it colocalized with apically targeted NHERF2. Our study identifies NHERF2 as the first specific PDZ partner for PMCA2b not shared with PMCA4b, and demonstrates that PMCA splice forms differing only minimally in their COOH-terminal residues interact with unique PDZ proteins. NHERFs have been implicated in the targeting, retention and regulation of membrane proteins including the beta(2)-adrenergic receptor, cystic fibrosis transmembrane conductance regulator, and Trp4 Ca(2+) channel, and NHERF2 is now shown to also interact with PMCA2b. This interaction may allow the functional assembly of PMCA2b in a multiprotein Ca(2+) signaling complex, facilitating integrated cross-talk between local Ca(2+) influx and efflux.  相似文献   

15.
Purification of the bovine rod outer segment Na+/Ca2+ exchanger   总被引:1,自引:0,他引:1  
Optimal conditions for solubilization and stabilization of the Na+/Ca2+ exchanger from rod outer segments were examined. The exchanger was found to be most stable at low detergent concentrations (7.5 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate), greater than or equal to 100 mM NaCl, pH 7.0-7.5, and with 0.1% added soybean asolectin. The sulfhydryl-modifying reagent, dithiothreitol, caused a loss of exchanger activity and was omitted throughout the purification procedure. These conditions were used to purify the Na+/Ca2+ exchanger from rod outer segments by a combination of selective solubilization, ion exchange, and wheat germ agglutinin chromatography. The procedure achieves a 336-fold increase in exchanger specific activity. The presence of exchanger activity most closely correlates with a polypeptide of molecular mass 215-kDa. Exchanger activity in both the crude rod outer segments and the purified exchanger is specifically dependent upon the presence of K+ in the assay medium; neither choline nor Li+ can substitute for K+.  相似文献   

16.
17.
18.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

19.
Jeon D  Yang YM  Jeong MJ  Philipson KD  Rhim H  Shin HS 《Neuron》2003,38(6):965-976
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) concentration via the forward mode (Ca(2+) efflux) or the reverse mode (Ca(2+) influx). To define the physiological function of the exchanger in vivo, we generated mice deficient for NCX2, the major isoform in the brain. Mutant hippocampal neurons exhibited a significantly delayed clearance of elevated Ca(2+) following depolarization. The frequency threshold for LTP and LTD in the hippocampal CA1 region was shifted to a lowered frequency in the mutant mice, thereby favoring LTP. Behaviorally, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. These results demonstrate that NCX2 can be a temporal regulator of Ca(2+) homeostasis and as such is essential for the control of synaptic plasticity and cognition.  相似文献   

20.
The olfactory organs from the squid Lolliguncula brevis are composed of a pseudostratified epithelium containing five morphological subtypes of chemosensory neurons and ciliated support cells. Physiological recordings have been made from two of the subtypes and only the type 4 neuron has been studied in detail. Odour-stimulated increases in intracellular calcium and rapid activation of an electrogenic Na+/Ca2+ exchanger current in type 4 neurons suggest that the exchanger proteins are localized very close to the transduction machinery. Electrophysiological studies have shown that olfactory signal transduction takes place in the apical ciliary regions of olfactory neurons. Using polyclonal antiserum against squid Na+/Ca2+ proteins, we observed specific staining in the ciliary region of cells that resemble type 2, 3, 4 and 5 neurons. Staining was also observed in axon bundles, and in muscle tissue. Collectively, these data support the model that Na+/Ca2+ exchanger proteins are localized to transduction machinery in cilia of type 4 neurons and suggest that the other olfactory subtypes also use Ca2+ during chemosensory responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号