首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polar auxin movement is a primary regulator of programmed and plastic plant development. Auxin transport is highly regulated at the cellular level and is mediated by coordinated transport activity of plasma membrane-localized PIN, ABCB, and AUX1/LAX transporters. The activity of these transporters has been extensively analyzed using a combination of pharmacological inhibitors, synthetic auxins, and knock-out mutants in Arabidopsis. However, efforts to analyze auxin-dependent growth in other species that are less tractable to genetic manipulation require more selective inhibitors than are currently available. In this report, we characterize the inhibitory activity of 5-alkoxy derivatives of indole 3-acetic acid and 7-alkoxy derivatives of naphthalene 1-acetic acid, finding that the hexyloxy and benzyloxy derivatives act as potent inhibitors of auxin action in plants. These alkoxy-auxin analogs inhibit polar auxin transport and tropic responses associated with asymmetric auxin distribution in Arabidopsis and maize. The alkoxy-auxin analogs inhibit auxin transport mediated by AUX1, PIN, and ABCB proteins expressed in yeast. However, these analogs did not inhibit or activate SCF(TIR1) auxin signaling and had no effect on the subcellular trafficking of PIN proteins. Together these results indicate that alkoxy-auxins are inactive auxin analogs for auxin signaling, but are recognized by PIN, ABCB, and AUX1 auxin transport proteins. Alkoxy-auxins are powerful new tools for analyses of auxin-dependent development.  相似文献   

2.
It is believed that β-amyloid aggregation is an important event in the development of Alzheimer’s disease. In the course of our studies to identify β-amyloid aggregation inhibitors, a series of N-phenyl anthranilic acid analogs were synthesized and studied for β-amyloid inhibition activity. The synthesis, structure–activity relationship, and in vivo activity of these analogs are discussed.  相似文献   

3.
The low-molecular-weight compound JRC-II-191 inhibits infection of HIV-1 by blocking the binding of the HIV-1 envelope glycoprotein gp120 to the CD4 receptor and is therefore an important lead in the development of a potent viral entry inhibitor. Reported here is the use of two orthogonal screening methods, gold docking and ROCS shape-based similarity searching, to identify amine-building blocks that, when conjugated to the core scaffold, yield novel analogs that maintain similar affinity for gp120. Use of this computational approach to expand SAR produced analogs of equal inhibitory activity but with diverse capacity to enhance viral infection. The novel analogs provide additional lead scaffolds for the development of HIV-1 entry inhibitors that employ protein-ligand interactions in the vestibule of gp120 Phe 43 cavity.  相似文献   

4.
A novel class of inhibitors of the enzyme γ-glutamyl transpeptidase (GGT) were evaluated. The analog OU749 was shown previously to be an uncompetitive inhibitor of the GGT transpeptidation reaction. The data in this study show that it is an equally potent uncompetitive inhibitor of the hydrolysis reaction, the primary reaction catalyzed by GGT in vivo. A series of structural analogs of OU749 were evaluated. For many of the analogs, the potency of the inhibition differed between the hydrolysis and transpeptidation reactions, providing insight into the malleability of the active site of the enzyme. Analogs with electron withdrawing groups on the benzosulfonamide ring, accelerated the hydrolysis reaction, but inhibited the transpeptidation reaction by competing with a dipeptide acceptor. Several of the OU749 analogs inhibited the transpeptidation reaction by slow onset kinetics, similar to acivicin. Further development of inhibitors of the GGT hydrolysis reaction is necessary to provide new therapeutic compounds.  相似文献   

5.
The uptake of nucleosides and nucleoside analogs into human leukemia K562 cells is facilitated by the equilibrative transporters ENT1 and ENT2. Incubation of K562 cells with a variety of protein kinase inhibitors inhibited the transport of both uridine (ARA‐C) and cytidine (CPEC) analogs. These inhibitory effects were observed for a large number of kinase inhibitors including those against p38 MAPK, the EGF receptor kinase, protein kinase C, TOR and others. Thus these results suggest that the nucleoside transporters are unexpected targets for kinase inhibitors and may influence the design and application of combinatorial approaches of nucleoside analogs and kinase inhibitors in clinical applications.  相似文献   

6.
The uptake of nucleosides and nucleoside analogs into human leukemia K562 cells is facilitated by the equilibrative transporters ENT1 and ENT2. Incubation of K562 cells with a variety of protein kinase inhibitors inhibited the transport of both uridine (ARA-C) and cytidine (CPEC) analogs. These inhibitory effects were observed for a large number of kinase inhibitors including those against p38 MAPK, the EGF receptor kinase, protein kinase C, TOR and others. Thus these results suggest that the nucleoside transporters are unexpected targets for kinase inhibitors and may influence the design and application of combinatorial approaches of nucleoside analogs and kinase inhibitors in clinical applications.  相似文献   

7.
8.
Early studies led to the identification of 11β-aryl-4',5'-dihydrospiro[estra-4,9-diene-17β,4'-oxazole] analogs with potent and more selective antiprogestational activity compared to antiglucocorticoid activity than mifepristone. In the present study, we replaced the 4'-dimethylaminophenyl group of mifepristone with the benzoxazol group to give 5a-d. We also prepared the 17β-formamido analogs 6a,b using a new synthetic strategy via the intermediate epoxide 21. These compounds were evaluated for their antagonist hormonal properties using the T47D cell-based alkaline phosphatase assay and the A549 cell-based functional assay. Compound 5c showed potent antagonist activity at GR with better selectivity for GR versus PR than mifepristone and is a promising lead for further development.  相似文献   

9.
10.
Increasing evidence shows that sugars can act as signals affecting plant metabolism and development. Some of the effects of sugars on plant growth and development suggest an interaction of sugar signals with hormonal regulation. We investigated the effects of sugars on the induction of [alpha]-amylase by gibberellic acid in barley embryos and aleurone layers. Our results show that sugar and hormonal signaling interact in the regulation of gibberellic acid-induced gene expression in barley grains. The induction of [alpha]-amylase by gibberellic acid in the aleurone layer is unaffected by the presence of sugars, but repression by carbohydrates is effective in the embryo. [alpha]-Amylase expression in the embryo is localized to the scutellar epithelium and is hormone and sugar modulated. The effects of glucose are independent from the effects of sugars on gibberellin biosynthesis. They are not due to an osmotic effect, they are independent of abscisic acid, and only hexokinase-phosphorylatable glucose analogs are able to trigger gene repression. Overall, the results suggest the existence of an interaction between the hormonal and metabolic regulation of [alpha]-amylase genes in barley grains.  相似文献   

11.
8-Aminoquinolines (8-AQs) are important class of anti-infective therapeutics. 5-Phenoxy 8-aminoquinoline analogs have shown improved metabolic stability compared to primaquine. In view or predictive role of monoamine oxidases (MAO) in metabolism of 8-aminoquinolines the 5-phenoxy analogs were evaluated in vitro for the inhibition of recombinant human MAO-A and MAO-B. The analogs were several folds more potent inhibitors of MAO-A and MAO-B compared to primaquine, the parent drug, with selectivity for MAO-B. 5-(4-Trifluoromethylphenoxy)-4-methylprimaquine (6) Inhibited MAO-B with IC(50) value of 150 nM (626-fold more potent than primaquine). These results will have important implications in optimizing metabolic stability of 8-AQs to improve therapeutic value and also indicate scope for development of 8-AQs as selective MAO inhibitors.  相似文献   

12.
Flavins are active components of many enzymes. In most cases, riboflavin (vitamin B2) as a coenzyme represents the catalytic part of the holoenzyme. Riboflavin is an amphiphatic molecule and allows a large variety of different interactions with the enzyme itself and also with the substrate. A great number of active riboflavin analogs can readily be synthesized by chemical methods and, thus, a large number of possible inhibitors for many different enzyme targets is conceivable. As mammalian and especially human biochemistry depends on flavins as well, the target of the inhibiting flavin analog has to be carefully selected to avoid unwanted effects. In addition to flavoproteins, enzymes, which are involved in the biosynthesis of flavins, are possible targets for anti-infectives. Only a few flavin analogs or inhibitors of flavin biosynthesis have been subjected to detailed studies to evaluate their biological activity. Nevertheless, flavin analogs certainly have the potential to serve as basic structures for the development of novel anti-infectives and it is possible that, in the future, the urgent need for new molecules to fight multiresistant microorganisms will be met.  相似文献   

13.
TRH and its two analogs with modified hormonal activity were examined for the capacity to antagonize acute and chronic effects of ethanol in mice. It has been demonstrated that L-pyroglutamyl-L-seryl-L-leucinamide, an analog of TRH, that does not affect the secretion of TSH and decreases prolactin production has the same capacity as TRH to reduce the time of ethanol narcosis but produces a lesser effect on the ethanol-induced fall of rectal temperature. Both the drugs did not affect the ethanol-altered ability of mice to hold on the rotating bar. Methyl ether of TRH, a hormonally inactive analog, was ineffective as shown by all the tests. Neither TRH nor its analogs changed the development of tolerance to chronic administration of ethanol, recorded by the rotating bar test and rectal temperature drop.  相似文献   

14.
Both prostacyclin analogs and phosphodiesterase 5 (PDE5) inhibitors are effective treatments for pulmonary arterial hypertension (PAH). In addition to direct effects on vascular smooth muscle, prostacyclin analogs increase cAMP levels and ATP release from healthy human erythrocytes. We hypothesized that UT-15C, an orally available form of the prostacyclin analog, treprostinil, would stimulate ATP release from erythrocytes of humans with PAH and that this release would be augmented by PDE5 inhibitors. Erythrocytes were isolated and the effect of UT-15C on cAMP levels and ATP release were measured in the presence and absence of the PDE5 inhibitors, zaprinast or tadalafil. In addition, the ability of a soluble guanylyl cyclase inhibitor to prevent the effects of tadalafil was determined. Erythrocytes of healthy humans and humans with PAH respond to UT-15C with increases in cAMP levels and ATP release. In both groups, UT-15C-induced ATP release was potentiated by zaprinast and tadalafil. The effect of tadalafil was prevented by pre-treatment with an inhibitor of soluble guanylyl cyclase in healthy human erythrocytes. Importantly, UT-15C-induced ATP release was greater in PAH erythrocytes than in healthy human erythrocytes in both the presence and the absence of PDE5 inhibitors. The finding that prostacyclin analogs and PDE5 inhibitors work synergistically to enhance release of the potent vasodilator ATP from PAH erythrocytes provides a new rationale for the co-administration of these drugs in this disease. Moreover, these results suggest that the erythrocyte is a novel target for future drug development for the treatment of PAH.  相似文献   

15.
Parasitic diseases, such as African sleeping sickness, have a significant impact on the health and well-being in the poorest regions of the world. Pragmatic drug discovery efforts are needed to find new therapeutic agents. In this Letter we describe target repurposing efforts focused on trypanosomal phosphodiesterases. We outline the synthesis and biological evaluation of analogs of sildenafil (1), a human PDE5 inhibitor, for activities against trypanosomal PDEB1 (TbrPDEB1). We find that, while low potency analogs can be prepared, this chemical class is a sub-optimal starting point for further development of TbrPDE inhibitors.  相似文献   

16.
Histone deacetylase (HDAC) proteins have emerged as important targets for anti-cancer drugs, with four small molecules approved for use in the clinic. Suberoylanilide hydroxamic acid (Vorinostat, SAHA) was the first FDA-approved HDAC inhibitor for cancer treatment. However, SAHA inhibits most of the eleven HDAC isoforms. To understand the structural requirements of HDAC inhibitor selectivity and develop isoform selective HDAC inhibitors, SAHA analogs modified in the linker at the C5 position were synthesized and tested for potency and selectivity. C5-modified SAHA analogs displayed dual selectivity to HDAC6 and HDAC8 over HDAC 1, 2, and 3, with only a modest reduction in potency. These findings are consistent with prior work showing that modification of the linker region of SAHA can alter isoform selectivity. The observed HDAC6/8 selectivity of C5-modified SAHA analogs provide guidance toward development of isoform selective HDAC inhibitors and more effective anti-cancer drugs.  相似文献   

17.
Activation of myosin light chain kinase is a prerequisite for smooth muscle activation. In this study, short peptide analogs of the phosphorylation site of the myosin light chain were studied for their effects on several contractile protein systems. The peptides inhibited phosphorylation of isolated ventricular and smooth muscle myosin light chains by smooth muscle myosin light chain kinase, but they were only weak inhibitors of phosphorylation of intact myosin and actomyosin. The peptides were also unable to block force development or myosin light chain phosphorylation in glycerol permeabilized fibers of swine carotid media. Apparently, the association of the myosin light chain with myosin changes its conformation such that substrate analogs which are potent inhibitors of the phosphorylation of isolated myosin light chains by myosin light chain kinase are ineffective at blocking phosphorylation of the intact molecule.  相似文献   

18.
Systematic variations of the xanthine scaffold in close analogs of development compound BI 1356 led to the class of 3,5-dihydro-imidazo[4,5-d]pyridazin-4-ones which provided, after substituent screening, a series of highly potent DPP-4 inhibitors.  相似文献   

19.
This Letter reports the optimization of a pyrrolopyrimidine series as dual inhibitors of Aurora A/B kinases. This series derived from a pyrazolopyrimidine series previously reported as inhibitors of aurora kinases and CDKs. In an effort to improve the selectivity of this chemotype, we switched to the pyrrolopyrimidine core which allowed functionalization on C-2. In addition, the modeling rationale was based on superimposing the structures of Aurora-A kinase and CDK2 which revealed enough differences leading to a path for selectivity improvement. The synthesis of the new series of pyrrolopyrimidine analogs relied on the development of a different route for the two key intermediates 7 and 19 which led to analogs with both tunable activity against CDK1 and maintained cell potency.  相似文献   

20.
A macrophage migration inhibitory factor (MIF) dopachrome tautomerization assay was employed for identification of MIF inhibitors. One group of dopachrome analogs was identified which inhibits MIF tautomerase activity. In particular, the analogs with a leaving group at beta position displayed activity at a concentration of tenfold less than that of the MIF-substrate. These findings could lead to a better understanding of MIF biological activities and the development of agents for the treatment of MIF related diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号