首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Titrations of Escherichia coli translation initiation factor IF3, isotopically labeled with 15N, with 30S ribosomal subunits were followed by NMR by recording two-dimensional (15N,1H)-HSQC spectra. In the titrations, intensity changes are observed for cross peaks belonging to amides of individual amino acids. At low concentrations of ribosomal subunits, only resonances belonging to amino acids of the C-domain of IF3 are affected, whereas all those attributed to the N-domain are still visible. Upon addition of a larger amount of 30S subunits cross peaks belonging to residues of the N-terminal domain of the protein are also selectively affected. Our results demonstrate that the two domains of IF3 are functionally independent, each interacting with a different affinity with the ribosomal subunits, thus allowing the identification of the individual residues of the two domains involved in this interaction. Overall, the C-domain interacts with the 30S subunits primarily through some of its loops and alpha-helices and the residues involved in ribosome binding are distributed rather symmetrically over a fairly large surface of the domain, while the N-domain interacts mainly via a small number of residues distributed asymmetrically in this domain. The spatial organization of the active sites of IF3, emerging through the comparison of the present data with the previous chemical modification and mutagenesis data, is discussed in light of the ribosomal localization of IF3 and of the mechanism of action of this factor.  相似文献   

2.
Initiation factor IF3 is an essential protein that enhances the fidelity and speed of bacterial mRNA translation initiation. Here, we describe the dynamic interplay between IF3 domains and their alternative binding sites using pre-steady state kinetics combined with molecular modelling of available structures of initiation complexes. Our results show that IF3 accommodates its domains at velocities ranging over two orders of magnitude, responding to the binding of each 30S ligand. IF1 and IF2 promote IF3 compaction and the movement of the C-terminal domain (IF3C) towards the P site. Concomitantly, the N-terminal domain (IF3N) creates a pocket ready to accept the initiator tRNA. Selection of the initiator tRNA is accompanied by a transient accommodation of IF3N towards the 30S platform. Decoding of the mRNA start codon displaces IF3C away from the P site and rate limits translation initiation. 70S initiation complex formation brings IF3 domains in close proximity to each other prior to dissociation and recycling of the factor for a new round of translation initiation. Altogether, our results describe the kinetic spectrum of IF3 movements and highlight functional transitions of the factor that ensure accurate mRNA translation initiation.  相似文献   

3.
IF3C is the C-terminal domain of Escherichia coli translation initiation factor 3 (IF3) and is responsible for all functions of this translation initiation factor but for its ribosomal recycling. To map the number and nature of the active sites of IF3 and to identify the essential Arg residue(s) chemically modified with 2,3-butanedione, the eight arginine residues of IF3C were substituted by Lys, His, Ser and Leu, generating 32 variants that were tested in vitro for all known IF3 activities. The IF3-30S subunit interaction was inhibited strongly by substitutions of Arg99, Arg112, Arg116, Arg147 and Arg168, the positive charges being important at positions 116 and 147. The 70S ribosome dissociation was affected by mutations of Arg112, Arg147 and, to a lesser extent, of Arg99 and Arg116. Pseudo-initiation complex dissociation was impaired by substitution of Arg99 and Arg112 (whose positive charges are important) and, to a lesser extent, of Arg116, Arg129, Arg133 and Arg147, while the dissociation of non-canonical 30S initiation complexes was preserved at wild-type levels in all 32 mutants. Stimulation of mRNA translation was reduced by mutations of Arg116, Arg129 and, to a lesser extent, of Arg99, Arg112 and Arg131 whereas inhibition of non-canonical mRNA translation was affected by substitutions of Arg99, Arg112, Arg168 and, to a lesser extent, Arg116, Arg129 and Arg131. Finally, repositioning the mRNA on the 30S subunit was affected weakly by mutations of Arg133, Arg131, Arg168, Arg147 and Arg129. Overall, the results define two active surfaces in IF3C, and indicate that the different functions of IF3 rely on different molecular mechanisms involving separate active sites.  相似文献   

4.
5.
Protein biosynthesis in bacteria is controlled by a number of translation factors. Recent data based on comparison of sequence and structure data of translation factors have established a novel hypothesis for their interaction with the ribosome: initiation, elongation, and termination factors may use a common or partly overlapping binding site on the ribosome in a process of macromolecular mimicry of an A-site-bound tRNA. This paper reviews structural knowledge and tRNA macromolecular mimicry involvement of translation initiation factor IF2. Furthermore, a model is proposed for the factor and its interaction with the ribosome during the formation of the translation initiation complex.  相似文献   

6.
Ribosome anti-association factor eIF6 (originally named according to translation initiation terminology as eukaryotic initiation factor 6) binds to the large ribosomal subunit, thereby preventing inappropriate interactions with the small subunit during initiation of protein synthesis. We have determined the X-ray structures of two IF6 homologs, Methanococcus jannaschii archaeal aIF6 and Sacchromyces cerevisiae eIF6, revealing a phylogenetically conserved 25 kDa protein consisting of five quasi identical alpha/beta subdomains arrayed about a five-fold axis of pseudosymmetry. Yeast eIF6 prevents ribosomal subunit association. Comparative protein structure modeling with other known archaeal and eukaryotic homologs demonstrated the presence of two conserved surface regions, one or both of which may bind the large ribosomal subunit.  相似文献   

7.
Translation initiation factor IF3 is required for peptide chain initiation in Escherichia coli. IF3 binds directly to 30S ribosomal subunits ensuring a constant supply of free 30S subunits for initiation complex formation, participates in the kinetic selection of the correct initiator region of mRNA, and destabilizes initiation complexes containing noninitiator tRNAs. The roles that tyrosine 107 and lysine 110 play in IF3 function were examined by site-directed mutagenesis. Tyrosine 107 was changed to either phenylalanine (Y107F) or leucine (Y107L), and lysine 110 was converted to either arginine (K110R) or leucine (K110L). These single amino acid changes resulted in a reduced affinity of IF3 for 30S subunits. Association equilibrium constants (M-1) for 30S subunit binding were as follows: wild-type, 7.8 x 10(7); Y107F, 4.1 x 10(7); Y107L, 1 x 10(7); K110R, 5.1 x 10(6); K110L, < 1 x 10(2). The mutant IF3s were similarly impaired in their abilities to specifically select initiation complexes containing tRNA(fMet). Toeprint analysis indicated that 5-fold more Y107L or K110R protein was required for proper initiator tRNA selection. K110L protein was unable to mediate this selection even at concentrations up to 10-fold higher than wild type. The results indicate that tyrosine 107 and lysine 110 are critical components of the ribosome binding domain of IF3 and, furthermore, that dissociation of complexes containing noninitiator tRNAs requires prior binding of IF3 to the ribosomes.  相似文献   

8.
Bacterial translation initiation factor IF2 is a GTP-binding protein that catalyzes binding of initiator fMet-tRNA in the ribosomal P site. The topographical localization of IF2 on the ribosomal subunits, a prerequisite for understanding the mechanism of initiation complex formation, has remained elusive. Here, we present a model for the positioning of IF2 in the 70S initiation complex as determined by cleavage of rRNA by the chemical nucleases Cu(II):1,10-orthophenanthroline and Fe(II):EDTA tethered to cysteine residues introduced into IF2. Two specific amino acids in the GII domain of IF2 are in proximity to helices H3, H4, H17, and H18 of 16S rRNA. Furthermore, the junction of the C-1 and C-2 domains is in proximity to H89 and the thiostrepton region of 23S rRNA. The docking is further constrained by the requisite proximity of the C-2 domain with P-site-bound tRNA and by the conserved GI domain of the IF2 with the large subunit's factor-binding center. Comparison of our present findings with previous data further suggests that the IF2 orientation on the 30S subunit changes during the transition from the 30S to 70S initiation complex.  相似文献   

9.
10.
Stm1p is a Saccharomyces cerevisiae protein that is primarily associated with cytosolic 80S ribosomes and polysomes. Several lines of evidence suggest that Stm1p plays a role in translation under nutrient stress conditions, although its mechanism of action is not yet known. In this study, we show that yeast lacking Stm1p (stm1Δ) are hypersensitive to the translation inhibitor anisomycin, which affects the peptidyl transferase reaction in translation elongation, but show little hypersensitivity to other translation inhibitors such as paromomycin and hygromycin B, which affect translation fidelity. Ribosomes isolated from stm1Δ yeast have intrinsically elevated levels of eukaryotic elongation factor 3 (eEF3) associated with them. Overexpression of eEF3 in cells lacking Stm1p results in a growth defect phenotype and increased anisomycin sensitivity. In addition, ribosomes with increased levels of Stm1p exhibit decreased association with eEF3. Taken together, our data indicate that Stm1p plays a complementary role to eEF3 in translation.  相似文献   

11.
Bacterial translation initiation factor IF2 promotes ribosomal subunit association, recruitment, and binding of fMet-tRNA to the ribosomal P-site and initiation dipeptide formation. Here, we present the solution structures of GDP-bound and apo-IF2-G2 of Bacillus stearothermophilus and provide evidence that this isolated domain binds the 50 S ribosomal subunit and hydrolyzes GTP. Differences between the free and GDP-bound structures of IF2-G2 suggest that domain reorganization within the G2-G3-C1 regions underlies the different structural requirements of IF2 during the initiation process. However, these structural signals are unlikely forwarded from IF2-G2 to the C-terminal fMet-tRNA binding domain (IF2-C2) because the connected IF2-C1 and IF2-C2 modules show completely independent mobility, indicating that the bacterial interdomain connector lacks the rigidity that was found in the archaeal IF2 homolog aIF5B.  相似文献   

12.
Translation initiation factor IF1 is an indispensable protein for translation in prokaryotes. No clear function has been assigned to this factor so far. In this study we demonstrate an RNA chaperone activity of this protein both in vivo and in vitro. The chaperone assays are based on in vivo or in vitro splicing of the group I intron in the thymidylate synthase gene (td) from phage T4 and an in vitro RNA annealing assay. IF1 wild-type and mutant variants with single amino acid substitutions have been analyzed for RNA chaperone activity. Some of the IF1 mutant variants are more active as RNA chaperones than the wild-type. Furthermore, both wild-type IF1 and mutant variants bind with high affinity to RNA in a band-shift assay. It is suggested that the RNA chaperone activity of IF1 contributes to RNA rearrangements during the early phase of translation initiation.  相似文献   

13.
14.
The amino acid sequence of the Dsg protein is 50% identical to that of translation initiation factor IF3 of Escherichia coli, the product of its infC gene. Anti-E. coli IF3 antibodies cross-react with the Dsg protein. Tn5 insertion mutations in dsg are lethal. When ample nutrients are available, however, certain dsg point mutant strains grow at the same rate as wild-type cells. Under the starvation conditions that induce fruiting body development, these dsg mutants begin to aggregate but fail to develop further. The level of Dsg antigen, as a fraction of total cell protein, does not change detectably during growth and development, as expected for a factor essential for protein synthesis. The amount of IF3 protein in E. coli is known to be autoregulated at the translational level. This autoregulation is lost in an E. coli infC362 missense mutant. The dsg+ gene from Myxococcus xanthus restores normal autoregulation to the infC362 mutant strain. Dsg is distinguished from IF3 of E. coli, other enteric bacteria, and Bacillus stearothermophilus by having a C-terminal tail of 66 amino acids. Partial and complete deletion of this tail showed that it is needed for certain vegetative and developmental functions but not for viability.  相似文献   

15.
Initiation factor IF3 is responsible for the accuracy of translation initiation in bacteria, by destabilizing complexes involving non-initiator tRNA and/or nonstart codons. This proofreading is performed on the 30S subunit to which IF3 binds selectively. IF3 has an unusual architecture, with two globular domains connected by a mobile, positively charged linker. Here, we have investigated the function of this flexible tether by probing its conformation when IF3 is bound to the ribosomal RNA. Using site-directed mutagenesis of the linker region, we have also selectively modified its length, its flexibility and its chemical composition. The function of the mutant genes was assayed in vivo, and the structural and biochemical properties of some of the corresponding variant proteins were characterized in vitro. The two isolated domains of IF3 were also co-expressed in order to test the requirement for their covalent attachment. The results indicate that the physical link between the two domains of IF3 is essential for the function of this protein, but that the exact length and chemical composition of the linker can be varied to a large extent. A model is presented in which the extended linker would act as a 'strap', triggering a conformational change in the 30S subunit, which would then ensure initiator tRNA selection.  相似文献   

16.
To investigate the physiological roles of translation initiation factor IF3 and ribosomal protein L20 inEscherichia coli, theinfC, rpmI andrpIT genes encoding IF3, L35 and L20, respectively, were placed under the control oflac promoter/operator sequences. Thus, their expression is dependent upon the amount of inducer isopropyl thiogalactoside (IPTG) in the medium. Lysogenic strains were constructed with recombinant lambda phages that express eitherrpmI andrplT orinfC andrpmI in trans, thereby allowing depletion of only IF3 or L20 at low IPTG concentrations. At low IPTG concentrations in the IF3-limited strain, the cellular concentration of IF3, but not L20, decreases and the growth rate slows. Furthermore, ribosomes run off polysomes, indicating that IF3 functions during the initiation phase of protein synthesis in vivo. During slow growth, the ratio of RNA to protein increases rather than decreases as occurs with control strains, indicating that IF3 limitation disrupts feedback inhibition of rRNA synthesis. As IF3 levels drop, expression from an AUU-infC-lacZ fusion increases, whereas expression decreases from an AUG-infC-lacZ fusion, thereby confirming the model of autogenous regulation ofinfC. The effects of L20 limitation are similar; cells grown in low concentrations of IPTG exhibited a decrease in the rate of growth, a decrease in cellular L20 concentration, no change in IF3 concentration, and a small increase in the ratio of RNA to protein. In addition, a decrease in 50S subunits and the appearance of an aberrant ribosome peak at approximately 41–43S is seen. Previous studies have shown that the L20 protein negatively controls its own gene expression. Reduction of the cellular concentration of L20 derepresses the expression of anrplT-lacZ gene fusion, thus confirming autogenous regulation by L20.  相似文献   

17.
The path of messenger RNA through the ribosome   总被引:26,自引:0,他引:26  
Yusupova GZ  Yusupov MM  Cate JH  Noller HF 《Cell》2001,106(2):233-241
Using X-ray crystallography, we have directly observed the path of mRNA in the 70S ribosome in Fourier difference maps at 7 A resolution. About 30 nucleotides of the mRNA are wrapped in a groove that encircles the neck of the 30S subunit. The Shine-Dalgarno helix is bound in a large cleft between the head and the back of the platform. At the interface, only about eight nucleotides (-1 to +7), centered on the junction between the A and P codons, are exposed, and bond almost exclusively to 16S rRNA. The mRNA enters the ribosome around position +13 to +15, the location of downstream pseudoknots that stimulate -1 translational frame shifting.  相似文献   

18.
Chloroplasts are cellular organelles of plants and algae that are responsible for energy conversion and carbon fixation by the photosynthetic reaction. As a consequence of their endosymbiotic origin, they still contain their own genome and the machinery for protein biosynthesis. Here, we present the atomic structure of the chloroplast 70S ribosome prepared from spinach leaves and resolved by cryo‐EM at 3.4 Å resolution. The complete structure reveals the features of the 4.5S rRNA, which probably evolved by the fragmentation of the 23S rRNA, and all five plastid‐specific ribosomal proteins. These proteins, required for proper assembly and function of the chloroplast translation machinery, bind and stabilize rRNA including regions that only exist in the chloroplast ribosome. Furthermore, the structure reveals plastid‐specific extensions of ribosomal proteins that extensively remodel the mRNA entry and exit site on the small subunit as well as the polypeptide tunnel exit and the putative binding site of the signal recognition particle on the large subunit. The translation factor pY, involved in light‐ and temperature‐dependent control of protein synthesis, is bound to the mRNA channel of the small subunit and interacts with 16S rRNA nucleotides at the A‐site and P‐site, where it protects the decoding centre and inhibits translation by preventing tRNA binding. The small subunit is locked by pY in a non‐rotated state, in which the intersubunit bridges to the large subunit are stabilized.  相似文献   

19.
Initiation of protein synthesis in bacteria relies on the presence of three translation initiation factors, of which translation initiation factor IF1 is the smallest having a molecular weight of only 8.2 kDa. In addition to its function in this highly dynamic process, the essential IF1 protein also functions as an RNA chaperone. Despite extensive research, the exact function of IF1 in translation initiation has not yet been determined, and the research in the function of the factor has in some areas been impeded by the lack of monoclonal antibodies specific for this protein. Several attempts to induce immune response in mice with wild-type IF1 for the production of antibodies have failed. We have now succeeded in producing monoclonal antibodies specific for IF1 by applying a new immunization strategy involving an antigen combination of IF1 coupled to glutathione S-transferase (GST) and a recombinant dimer of IF1. This resulted in the generation of 6 IgG, 2 IgM, and 1 IgA anti-IF1 antibodies, which can be used in ELISA screening and Western immunoblots. We also provide a mapping of the functional epitopes of the generated anti-IF1 monoclonal antibodies by screening the antibodies for binding to IF1 proteins mutated at single amino acid positions.  相似文献   

20.
We have isolated genetic suppressors of mutations in the recJ gene of Escherichia coli in a locus we term srjA. These srjA mutations cause partial to complete alleviation of the recombination and UV repair defects conferred by recJ153 and recJ154 mutations in a recBC sbcA genetic background. The srjA gene was mapped to 37.5 min on the E. coli chromosome. This chromosomal region from the srjA5 strain was cloned into a plasmid vector and was shown to confer recJ suppression in a dominant fashion. Mutational analysis of this plasmid mapped srjA to the infC gene encoding translation initiation factor 3 (IF3). Sequence analysis revealed that all three srjA alleles cause amino acid substitutions of IF3. Suppression of recJ was shown to be allele specific: recJ153 and recJ154 mutations were suppressible, but recJ77 and the insertion allele recJ284::Tn10 were not. In addition, growth medium-conditional lethality was observed for strains carrying srjA mutations with the nonsuppressible recJ alleles. When introduced into recJ+ strains, srjA mutations conferred hyperrecombinational and hyper-UVr phenotypes. An interesting implication of these genetic properties of srjA suppression is that IF3 may regulate the expression of recJ and perhaps other recombination genes and hence may regulate the recombinational capacity of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号