首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Amino acid starvation markedly stimulates the activity of system A, a widely distributed transport route for neutral amino acids. The involvement of MAPK (mitogen-activated protein kinase) pathways in this adaptive increase of transport activity was studied in cultured human fibroblasts. In these cells, a 3-fold stimulation of system A transport activity required a 6-h amino acid-free incubation. However, a rapid tyrosine phosphorylation of ERK (extracellular regulated kinase) 1 and 2, and JNK (Jun N-terminal kinase) 1, but not of p38, was observed after the substitution of complete medium with amino acid-free saline solution. ERK1/2 activity was 4-fold enhanced after a 15-min amino acid-free incubation and maintained at stimulated values thereafter. A transient, less evident stimulation of JNK1 activity was also detected, while the activity of p38 was not affected by amino acid deprivation. PD98059, an inhibitor of ERK1/2 activation, completely suppressed the adaptive increase of system A transport activity that, conversely, was unaffected by inhibitors of other transduction pathways, such as rapamycin and wortmannin, as well as by chronic treatment with phorbol esters. In the presence of either L-proline or 2-(methylaminoisobutyric) acid, two substrates of system A, the transport increase was prevented and no sustained stimulation of ERK1/2 was observed. To identify the stimulus that maintains MAPK activation, cell volume was monitored during amino acid-free incubation. It was found that amino acid deprivation caused a progressive cell shrinkage (30% after a 6-h starvation). If proline was added to amino acid-starved, shrunken cells, normal values of cell volume were rapidly restored. However, proline-dependent volume rescue was hampered if cells were pretreated with PD98059. It is concluded that (a) the triggering of adaptive increase of system A activity requires a prolonged activation of ERK1 and 2 and that (b) cell volume changes, caused by the depletion of intracellular amino acid pool, may underlie the activation of MAPKs.  相似文献   

3.
When porcine endothelial cells were exposed to hypertonicity, both the level of ATA2 (amino acid transporter 2) mRNA and activity of amino acid transport System A increased transiently, peaking after about 6 and 9 h, respectively. Cycloheximide, like actinomycin D, prevented both responses, showing that an earlier step also involves protein synthesis. Withdrawal of hypertonicity after 6 h increased the rate of down regulation. These findings confirm that ATA2 is a major isoform of System A and show that changes in the expression of ATA2 mRNA precede both the induction and subsequent down regulation of transport activity.  相似文献   

4.
We investigated the molecular mechanism involved in the adaptive regulation of the amino acid transport system A, a process in which amino acid starvation induces the transport activity. These studies were done with rat C6 glioma cells. System A activity in these cells is mediated exclusively by the system A subtype, amino acid transporter A2 (ATA2). The other two known system A subtypes, ATA1 and ATA3, are not expressed in these cells. Exposure of these cells to an amino acid-free medium induces system A activity. This process consists of an acute phase and a chronic phase. Laser-scanning confocal microscopic immunolocalization of ATA2 reveals that the acute phase is associated with recruitment of preformed ATA2 from an intracellular pool to the plasma membrane. In contrast, the chronic phase is associated with an induction of ata2 gene expression as evidenced from the increase in the steady-state levels of ATA2 mRNA, restoration of the intracellular pool of ATA2 protein, and blockade of the induction by cycloheximide and actinomycin D. The increase in system A activity induced by amino acid starvation is blocked specifically by system A substrates, including the non-metabolizable alpha-(methylamino)isobutyric acid.  相似文献   

5.
6.
7.
Summary. In 3T3 cells temperatures higher than physiological stimulated amino acid transport activity in a dose-dependent manner up to 44°C. However, the temperature increase did not induce widespread transport increase of all other nutrients tested. The activities of both amino acid transport systems A and ASC were enhanced within a few minutes following cell exposure to increased temperature. The maintenance of this effect required continuous exposure of the cells to hyperthermia. Kinetic analysis indicated that the stimulation of the activity of transport System A occurred through a mechanism affecting Vmax rather than Km. The continuous presence of cycloheximide did not prevent the transport changes induced by hyperthermia. These results suggest that the increased amino acid uptake reflects an activation or relocation of existing amino acid transport proteins. During the hyperthermic treatment, the content of ninhydrin-positive substances (NPS), mostly amino acids, increased within the cells and the accumulation of these compatible osmolytes was parallelled by an increase in cell volume. The withdrawal of amino acids from the culture medium immediately before and during the shock phase counteracted the increase and reduced the NPS content but did not prevent the increase in amino acid transport, the cell swelling and the induction of the heat shock response. Received June 30, 1999 Accepted July 27, 2000  相似文献   

8.
Neutral amino acid transport was characterized in human synovial cells. The amino acids tested are transported by all three major neutral amino acid transport systems, that is, A, L, and ASC. The model amino acid 2-aminoisobutyric acid (AIB) was found to be a strong specific substrate for system A in synovial cells. When cells were starved of amino acids, the activity of AIB transport increased, reaching a maximum within 1 h. The stimulation of transport activity was not blocked by cycloheximide and would thus appear to be related to a release from transinhibition. Similarly, the decrease in the activity of AIB transport observed after the addition of alpha-methyl-aminoisobutyric acid (meAIB) appeared to be related to transinhibition. However, using a different approach, that is, amino acid starvation followed by incubation with 10 mM meAIB and transfer to an amino acid-free medium with or without cycloheximide supplementation, a clear increase in AIB uptake, due both to derepression and a release from transinhibition, was observed. Unlike human fibroblasts, the depression of system A in these synovial cells was not serum-dependent. The process of derepression was observed only after preloading with meAIB. Neither AIB nor alanine produced this phenomenon. Moreover, alanine preloading led to a large increase in AIB transport activity due to a release from transinhibition. These observations indicate that the process of derepression and release from transinhibition are specific to the substrates present in the culture medium prior to amino acid starvation.  相似文献   

9.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

10.
11.
Summary The functional aspects of sodium dependent amino acid transport in mesenchymal cells are the subject of this contribution. In a survey of the cross-talk existing among the various transport mechanisms, particular attention is devoted to the role played by substrates shared by several transport systems, such as L-glutamine. Intracellular levels of glutamine are determined by the activity of System A, the main transducer of ion gradients built on by Na,K-ATPase into neutral amino acid gradients. Changes in the activity of the System are employed to regulate intracellular amino acid pool and, hence, cell volume. System A activity has been found increased in hypertonically shrunken cells and in proliferating cells. Under both these conditions cells have to increase their volume; therefore, System A can be employed as a convenient mechanism to increase cell volume both under hypertonic and isotonic conditions. Although less well characterized, the uptake of anionic amino acids performed by System X AG may be involved in the maintenance of intracellular amino acid pool under conditions of limited availability of neutral amino acids substrates of System A.  相似文献   

12.
The accumulation of alpha-aminoisobutyric acid by placental slices is increased dramatically upon prior incubation of the slices in amino acid-free, buffered saline. This increase is inhibited by inhibitors of protein synthesis and is accompanied by an increased V for the transport process. While alternative explanations are discussed, these data suggest that the incubation effect may be mediated through an increase in the number of available transport sites which are synthesized during the incubation period. Incubation with an amino acid mixture diminishes the increase as well as general protein synthesis, suggesting that a reduced availability of amino acids may initiate compensatory changes in the synthesis of cellular transport proteins.  相似文献   

13.
14.
Summary The activities of the transport systems A, B° and XAG- are induced by various forms of stress in renal epithelial cells. Amino acid deprivation induces System A and XAG- in a protein-synthesis dependent process. In the case of System XAG- evidence is presented that induction of transport does not involve an increase in the amount of mRNA for the transporter or of the amount of transport protein. Preliminary evidence for the existence of a novel glycoprotein which is induced in parallel to the induction of these transport systems is presented. It is suggested that the induction of amino acid transport proteins and of some of the so-called stress proteins may be triggered by a common molecular mechanism.  相似文献   

15.
16.
Glucose and related non-metabolizable analogs were transported into cells of Stichococcus bacillaris Naeg. By a specific and active transport system. Glucose transport capacity was stimulated eight-fold by incubation in medium of low osmotic potential (0.09 osM). Stimulation occurred over 24 h in the dark and over 72 h in low osmotic medium. Inhibition of protein synthesis prevented any transport, stimulation from occurring. Kinetic studies revealed that the stimulation caused an increase in Ike maximal velocity of transport and did not affect the half-saturation constant for transport. It was concluded that incubation of cells in the dark or in low osmolar medium induces a synthesis of the transport system. The glucose analog 2-deoxy-D-glucose was only phosphorylated to a limited extent upon entry into the cells, and the free sugar accumulated linearly in dark pre-incubated tells for a period of at least six minutes to reach an intracellular/extracellular concentration ratio of almost 300. Glucose, in contrast, was rapid h converted to sucrose and other cell constituents. Cells incubated 24 h with, glucose or 6-deoxy-D-glucose did not exhibit any altered transport system activity. Cells incubated 24 h with 7 mM dibutyryl cAMP exhibited a 2.5-fold stimulation of transport activity. No stimulation was observed in cells treated only 30 min with dibutyryl cAMP.  相似文献   

17.
The accumulation of α-aminoisobutyric acid by placental slices is increased dramatically upon prior incubation of the slices in amino acid-free, buffered saline. This increase is inhibited by inhibitors of protein synthesis and is accompanied by an increased V for the transport process. While alternative explanations are discussed, these data suggest that the incubation effect may be mediated through an increase in the number of available transport sites which are synthesized during the incubation period. Incubation with an amino acid mixture diminishes the increase as well as general protein synthesis, suggesting that a reduced availability of amino acids may initiate compensatory changes in the synthesis of cellular transport proteins.  相似文献   

18.
We studied the uptake of leucine, phenylalanine, and the amino acid analog, 2-aminonorborane-2-carboxylic acid, by rat hepatoma cells in tissue culture. The uptake of these amino acids was partially mediated by a plasma membrane transport system similar to the L agency described in other cell types in that it does not require extracellular sodium and is subject to trans-stimulation. Initial rates of sodium-independent transport of these amino acids were calculated using mathematical transformations of the uptake time course curves. The glucocorticoid dexamethasone inhibits the activity of this transport system; the initial rates of sodium-independent uptake of leucine, phenylalanine, and 2-aminonorborane-2-carboxylic acid are decreased by approximately one-third (average = 30%, n = 19) after incubation of HTC cells with 0.1 microM dexamethasone. This inhibition requires at least 15 h, reaching a maximum at 24 h of exposure of the cells to the hormone. Dexamethasone has an asymmetrical effect on sodium-independent amino acid transport in that exposure of the cells to the hormone does not inhibit the rates of outflow of leucine or phenylalanine from preloaded cells into medium without sodium. Inhibition of uptake is blocked by 0.1 mM cycloheximide and 4 microM actinomycin D, indicating the need for continuous protein synthesis for dexamethasone action. Insulin, which is known to partially reverse the inhibitory effect of dexamethasone on the A amino acid transport system in HTC cells, does not alter the action of dexamethasone on the L system. Previous investigations have demonstrated inhibition by dexamethasone of at least two distinct sodium-dependent amino acid transport activities in HTC cells. The data presented here, showing inhibition by the glucocorticoid of a sodium-independent transport activity, indicate that the effect of the hormone is independent of the energy source of the amino acid transport systems affected.  相似文献   

19.
Substrate regulation of System A transport activity in rat H4 hepatoma cells is described. The uptake of several amino acids was tested in the presence of system-specific inhibitors. System A activity was increased in a RNA- and protein synthesis-dependent manner by amino acid deprivation of the cells (adaptive regulation), whereas transport by Systems ASC, N, y+, and L was unaffected. Unlike human fibroblasts, the H4 cells did not require serum to exhibit the depression of System A. At cell densities between 88 X 10(3) and 180 X 10(3) cells/cm2, the degree of adaptive regulation was inversely related to cell density. Both transport of AIB and adaptive regulation of System A were nearly abolished if either K+ or Li+ was substituted for Na+ in the medium. The presence of cycloheximide or tunicamycin blocked further increases in starvation-induced activity within 1 hr of addition, suggesting the involvement of a plasma membrane glycoprotein. In contrast, if the medium was supplemented with actinomycin after the stimulation of System A had begun, the activity continued to increase for an additional 2 hr before being slowed by the inhibitor. The contributions of trans-inhibition and repression to the amino acid-induced decay of System A activity were estimated for several representative amino acids. In general, the System A activity in normal rat hepatocytes was much less sensitive to trans-inhibition than the corresponding activity in H4 hepatoma cells. The half-life values for the amino acid-dependent decay of System A ranged from 0.5 to 2.0 hr.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号