首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that katanin could be required for the organization or postnucleation processing of microtubules, rather than the dissolution of microtubule structures. Here we reexamine katanin's role by studying acentrosomal female meiotic spindles in C. elegans embryos. In mutant embryos lacking katanin, microtubules form around meiotic chromatin but do not organize into bipolar spindles. By using electron tomography, we found that katanin converts long microtubule polymers into shorter microtubule fragments near meiotic chromatin. We further show that turning on katanin during mitosis also creates a large pool of short microtubules near the centrosome. Furthermore, the identification of katanin-dependent microtubule lattice defects supports a mechanism involving an initial perforation of the protofilament wall. Taken together, our data suggest that katanin is used during meiotic spindle assembly to increase polymer number from a relatively inefficient chromatin-based microtubule nucleation pathway.  相似文献   

2.
Katanin is a heterodimeric protein that mediates ATP-dependent destabilization of microtubules in animal cells. In plants, the catalytic subunit of Arabidopsis thaliana katanin (AtKSS, Arabidopsis thaliana Katanin Small Subunit) has been identified and its microtubule-severing activity has been demonstrated in vitro. In vivo, plant katanin plays a role in the organization of cortical microtubules, but the way it achieves this function is unknown. To go further in our understanding of the mechanisms by which katanin severs microtubules, we analyzed the functional domains of Arabidopsis katanin. We characterized the microtubule-binding domain of katanin both in vitro and in vivo. It corresponds to a poorly conserved sequence between plant and animal katanins that is located in the N-terminus of the protein. This domain interacts with cortical microtubules in vivo and has a low affinity for microtubules in vitro. We also observed that katanin microtubule-binding domain oligomerizes into trimers. These results show that, besides being involved in the interaction of katanin with microtubules, the microtubule-binding domain may also participate in the oligomerization of katanin. At the structural level, we observed that AtKSS forms ring-shaped oligomers.  相似文献   

3.
Microtubules are essential for a variety of fundamental cellular processes such as organelle positioning and control of cell shape. Schizosaccharomyces pombe is an ideal organism for studying the function and organization of microtubules into bundles in interphase cells. Using light microscopy and electron tomography we analyzed the bundle organization of interphase microtubules in S. pombe. We show that cells lacking ase1p and klp2p still contain microtubule bundles. In addition, we show that ase1p is the major determinant of inter-microtubule spacing in interphase bundles since ase1 deleted cells have an inter-microtubule spacing that differs from that observed in wild-type cells. We then identified dis1p, a XMAP215 homologue, as factor that promotes the stabilization of microtubule bundles. In wild-type cells dis1p partially co-localized with ase1p at regions of microtubule overlap. In cells deleted for ase1 and klp2, dis1p accumulated at the overlap regions of interphase microtubule bundles. In cells lacking all three proteins, both microtubule bundling and inter-microtubule spacing were further reduced, suggesting that Dis1p contributes to interphase microtubule bundling.  相似文献   

4.
There is broad agreement that cells reconfigure their microtubules through rapid bouts of assembly and disassembly, as described by the mechanism known as dynamic instability. However, many cell types have complex patterns of microtubule organization that are not entirely explicable by dynamic instability. There is growing evidence that microtubules can be moved into new patterns of organization by forces generated by molecular motor proteins. Studies on several cell types support a model called 'cut and run' in which long microtubules are stationary, but relatively short microtubules are mobile. In this model, cells mobilize their microtubules by severing them into short pieces, using enzymes such as katanin and spastin that break the lattice of the microtubule polymer. After being reorganized, the short microtubules can once again elongate and lose their mobility. Microtubule severing is also crucial for a variation of 'cut and run' in which the severed microtubules are reorganized by means of treadmilling.  相似文献   

5.
Microtubule nucleation in interphase plant cells primarily occurs through branching from pre-existing microtubules at dispersed sites in the cell cortex. The minus ends of new microtubules are often released from the sites of nucleation, and the free microtubules are then transported to new locations by polymer treadmilling. These nucleation-and-release events are characteristic features of plant arrays in interphase cells, but little is known about the spatiotemporal control of these events by nucleating protein complexes. We visualized the dynamics of two fluorescently-tagged γ-tubulin complex proteins, GCP2 and GCP3, in Arabidopsis thaliana. These probes labelled motile complexes in the cytosol that transiently stabilized at fixed locations in the cell cortex. Recruitment of labelled complexes occurred preferentially along existing cortical microtubules, from which new microtubule was synthesized in a branching manner, or in parallel to the existing microtubule. Complexes localized to microtubules were approximately 10-fold more likely to display nucleation than were complexes recruited to other locations. Nucleating complexes remained stable until daughter microtubules were either completely depolymerized from their plus ends or released by katanin-dependent severing activity. These observations suggest that the nucleation complexes are primarily activated on association with microtubule lattices, and that nucleation complex stability depends on association with daughter microtubules and is regulated in part by katanin activity.  相似文献   

6.
Self-organization of cellular structures is an emerging principle underlying cellular architecture. Properties of dynamic microtubules and microtubule-binding proteins contribute to the self-assembly of structures such as microtubule asters. In the fission yeast Schizosaccharomyces pombe, longitudinal arrays of cytoplasmic microtubule bundles regulate cell polarity and nuclear positioning. These bundles are thought to be organized from the nucleus at multiple interphase microtubule organizing centres (iMTOCs). Here, we find that microtubule bundles assemble even in cells that lack a nucleus. These bundles have normal organization, dynamics and orientation, and exhibit anti-parallel overlaps in the middle of the cell. The mechanisms that are responsible for formation of these microtubule bundles include cytoplasmic microtubule nucleation, microtubule release from the equatorial MTOC (eMTOC), and the dynamic fusion and splitting of microtubule bundles. Bundle formation and organization are dependent on mto1p (gamma-TUC associated protein), ase1p (PRC1), klp2p (kinesin-14) and tip1p (CLIP-170). Positioning of nuclear fragments and polarity factors by these microtubules illustrates how self-organization of these bundles contributes to establishing global spatial order.  相似文献   

7.
Microtubules or microtubule bundles in cells often grow longer than the size of the cell, which causes their shape and organization to adapt to constraints imposed by the cell geometry. We test the reciprocal role of elasticity and confinement in the organization of growing microtubules in a confining box-like geometry, in the absence of other (active) microtubule organizing processes. This is inspired, for example, by the cortical microtubule array of elongating plant cells, where microtubules are typically organized in an aligned array transverse to the cell elongation axis. The method we adopt is a combination of analytical calculations, in which the polymers are modeled as inextensible filaments with bending elasticity confined to a two-dimensional surface that defines the limits of a three-dimensional space, and in vitro experiments, in which microtubules are polymerized from nucleation seeds in microfabricated chambers. We show that these features are sufficient to organize the polymers in aligned, coiling configurations as for example observed in plant cells. Though elasticity can account for the regularity of these arrays, it cannot account for a transverse orientation of microtubules to the cell's long axis. We therefore conclude that an additional active, force-generating process is necessary to create a coiling configuration perpendicular to the long axis of the cell.  相似文献   

8.
An essential role for katanin in severing microtubules in the neuron   总被引:15,自引:0,他引:15  
Several lines of evidence suggest that microtubules are nucleated at the neuronal centrosome, and then released for transport into axons and dendrites. Here we sought to determine whether the microtubule-severing protein known as katanin mediates microtubule release from the neuronal centrosome. Immunomicroscopic analyses on cultured sympathetic neurons show that katanin is present at the centrosome, but is also widely distributed throughout the neuron. Microinjection of an antibody that inactivates katanin results in a dramatic accumulation of microtubules at the centrosome, indicating that katanin is indeed required for microtubule release from the centrosome. However, the antibody also causes an inhibition of axon outgrowth that is more immediate than expected on this basis alone. It may be that katanin severs microtubules throughout the cell body to keep them sufficiently short to be efficiently transported into developing processes. Consistent with this idea, there were significantly fewer free ends of microtubules in the cell bodies of neurons that had been injected with the katanin antibody compared with controls. These results indicate that microtubule-severing by katanin is essential for releasing microtubules from the neuronal centrosome, and also for regulating the length of the microtubules after their release.  相似文献   

9.
Cells were prepared for indirect immunofluorescence microscopy after paraformaldehyde fixation of multicellular root apices and brief incubation in cell wall-digesting enzymes. This allowed subsequent separation of the tissue into individual cells or short files of cells which were put onto coverslips coated with polylysine. Unlike spherical protoplasts made from living tissues, these preparations retain the same polyhedral shape as the cells from which they are derived. Cellular contents, including organized arrays of microtubules, are likewise structurally stabilized. Antibodies to porcine brain tubulin react with all types of microtubule array known to occur in plant meristematic cells, namely, interphase cortical microtubules, pre- prophase bands, the mitotic spindle, and phragmoplast microtubules. The retention of antigenicity in permeabilized, isolated, stabilized cells from typical, wall-enclosed plant cells has much potential for plant immunocytochemistry, and in particular should facilitate work on the role of microtubules in the morphogenesis of organized plant tissues.  相似文献   

10.
The noncentrosomal cortical microtubules (CMTs) of plant cells self-organize into a parallel three-dimensional (3D) array that is oriented transverse to the cell elongation axis in wild-type plants and is oblique in some of the mutants that show twisted growth. To study the mechanisms of CMT array organization, we developed a 3D computer simulation model based on experimentally observed properties of CMTs. Our computer model accurately mimics transverse array organization and other fundamental properties of CMTs observed in rapidly elongating wild-type cells as well as the defective CMT phenotypes observed in the Arabidopsis mor1-1 and fra2 mutants. We found that CMT interactions, boundary conditions, and the bundling cutoff angle impact the rate and extent of CMT organization, whereas branch-form CMT nucleation did not significantly impact the rate of CMT organization but was necessary to generate polarity during CMT organization. We also found that the dynamic instability parameters from twisted growth mutants were not sufficient to generate oblique CMT arrays. Instead, we found that parameters regulating branch-form CMT nucleation and boundary conditions at the end walls are important for forming oblique CMT arrays. Together, our computer model provides new mechanistic insights into how plant CMTs self-organize into specific 3D arrangements.  相似文献   

11.
We have investigated the appearance and reorganization of tubulin-containing arrays induced by colchicine in the root meristem of wheat Triticum aestivum, using immunostaining and electron microscopy. Colchicine caused depolymerization of microtubules and formation of tubulin cortical strands composed of filamentous material only in C-mitotic cells. After prolonged exposure to the drug, both interphase and C-mitotic cells acquired needle-type bundles, arranged as different crystalloids and/or macrotubules. The unmodified tyrosinated form of alpha-tubulin was detected within microtubules in control cells, but was not found within cortical strands. It was identified, however, within needle-type bundles. The modified acetylated form of alpha-tubulin, which was absent in control cells, was detected within needle-type bundles. Thus, cortical strands were transitory arrays, transformed into needle-type bundles during prolonged exposure to colchicine. Cortical strands appeared in a cell cycle-dependent manner, whereas needle-type bundles were cell cycle stable arrays. The diverse morphological organization, intracellular distribution and stability of tubulin-containing arrays may be associated with heterogeneity of alpha-tubulin isoforms. We assume that non-microtubular arrays substitute for microtubules in conditions where normal tubulin polymerization is inhibited.  相似文献   

12.
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.  相似文献   

13.
Microtubules are dynamic structures whose proper rearrangement during the cell cycle is essential for the positioning of membranes during interphase and for chromosome segregation during mitosis. The previous discovery of a cyclin B/cdc2-activated microtubule-severing activity in M-phase Xenopus egg extracts suggested that a microtubule-severing protein might play an important role in cell cycle-dependent changes in microtubule dynamics and organization. However, the isolation of three different microtubule-severing proteins, p56, EF1α, and katanin, has only confused the issue because none of these proteins is directly activated by cyclin B/cdc2. Here we use immunodepletion with antibodies specific for a vertebrate katanin homologue to demonstrate that katanin is responsible for the majority of M-phase severing activity in Xenopus eggs. This result suggests that katanin is responsible for changes in microtubules occurring at mitosis. Immunofluorescence analysis demonstrated that katanin is concentrated at a microtubule-dependent structure at mitotic spindle poles in Xenopus A6 cells and in human fibroblasts, suggesting a specific role in microtubule disassembly at spindle poles. Surprisingly, katanin was also found in adult mouse brain, indicating that katanin may have other functions distinct from its mitotic role.  相似文献   

14.
Regulation of microtubule dynamics at the cell cortex is important for cell motility, morphogenesis and division. Here we show that the Drosophila katanin Dm-Kat60 functions to generate a dynamic cortical-microtubule interface in interphase cells. Dm-Kat60 concentrates at the cell cortex of S2 Drosophila cells during interphase, where it suppresses the polymerization of microtubule plus-ends, thereby preventing the formation of aberrantly dense cortical arrays. Dm-Kat60 also localizes at the leading edge of migratory D17 Drosophila cells and negatively regulates multiple parameters of their motility. Finally, in vitro, Dm-Kat60 severs and depolymerizes microtubules from their ends. On the basis of these data, we propose that Dm-Kat60 removes tubulin from microtubule lattice or microtubule ends that contact specific cortical sites to prevent stable and/or lateral attachments. The asymmetric distribution of such an activity could help generate regional variations in microtubule behaviours involved in cell migration.  相似文献   

15.
Summary Organizational changes in the microtubules of isolated generative cells of Allemanda neriifolia during mitosis were examined using anti--tubulin and confocal laser scanning microscopy. Due to an improved resolution and a lack of out-of-focus interference, the images of the mitotic cytoskeleton obtained using the confocal microscope are much clearer than those obtained using the non-confocal fluorescence systems. In the confocal microscope one can see clearly that the spindle-shaped interphase cells contain a cage-like cytoskeleton consisting of numerous longitudinally oriented microtubule bundles and some associated smaller bundles. At prophase, the shape of the cells invariably becomes spherical. The microtubule cytoskeleton inside the cells concomitantly changes into a less organized form — consisting of thick bundles, patches, and dots. This structural form is not very stable, and soon afterwards the cytoskeleton changes into a reticulate network. Then the nuclear envelope breaks down, and the microtubules become randomly dispersed throughout the cell. Afterwards, the microtubules reorganize themselves into a number of half-spindle-like structures, each possessing a microtubule-nucleating center. The locations of these centres mark out the positions of the presumptive spindle poles. Numerous microtubules radiate from these centres toward the opposite pole. At metaphase, the microtubules form a number of bipolar spindles. Each spindle has two half-spindles, and each half-spindle has a sharply focused microtubule centre at the pole region. From the centres, kinetochore and non-kinetochore microtubules radiate toward the opposite half-spindle. At anaphase A, sister chromatids separate, the cells elongate, and the kinetochore microtubules disappear; the non-kinetochore microtubules, however, remain, and a new array of microtubules, in the form of a cage, appears. The peripheral cage bundles and the non-kinetochore bundles coverge into a sharp point at the pole region. Later, at anaphase B the microtubule cytoskeleton undergoes reorganization giving rise to a new array of longitudinally oriented microtubule bundles in the cell centre and a cage-like cytoskeleton in the periphery. At telophase, some of the cells elongate further, but some become spherical. The microtubules in the central region of the elongated cell become partially disrupted due to the formation of a phragmoplast-junction-like structure in the mid-interzone region. The microtubule bundles at the periphery are spirally organized, and they appear not to be disrupted by the phragmoplast-like junction. The microtubules in the spherical telophase cells (unlike those seen in the elongated telophase cells) are arranged differently, and no phragmoplast-junction-like structure forms in the spherical cells. The structural and functional significances of some of these new features of the organization of the microtubule cytoskeleton as revealed by the confocal microscope are discussed.  相似文献   

16.
Dynamic properties of microtubules contribute to the establishment of spatial order within cells. In the fission yeast Schizosaccharomyces pombe, interphase cytoplasmic microtubules are organized into antiparallel bundles that attach to the nuclear envelope and are needed to position the nucleus at the geometric center of the cell. Here, we show that after the nucleus is displaced by cell centrifugation, these microtubule bundles efficiently push the nucleus back to the center. Asymmetry in microtubule number, length, and dynamics contributes to the generation of force responsible for this unidirectional movement. Notably, microtubules facing the distal cell tip are destabilized when the microtubules in the same bundle are pushing from the proximal cell tip. The CLIP-170-like protein tip1p and the microtubule-bundling protein ase1p are required for this asymmetric regulation of microtubule dynamics, indicating contributions of factors both at microtubule plus ends and within the microtubule bundle. Mutants in these factors are defective in nuclear movement. Thus, cells possess an efficient microtubule-based engine that produces and senses forces for centering the nucleus. These studies may provide insights into mechanisms of asymmetric microtubule behaviors and force sensing in other processes such as chromosome segregation and cell polarization.  相似文献   

17.
Microtubules perform essential functions in plant cells and govern, with other cytoskeletal elements, cell division, formation of cell walls and morphogenesis. For microtubules to perform their roles in the cell their organization and dynamics must be regulated and microtubule-associated proteins bear the main responsibility for these activities. We are just beginning to identify these plant microtubule-regulating proteins. Biochemical, molecular and genetic procedures have identified plant homologues of known microtubule-associated proteins, such as kinesins, katanin and XMAP215, and novel classes of plant microtubule-associated proteins, such as MAP65 and MAP190. Showing how these proteins coordinate the microtubule cytoskeleton in vivo is now the challenge. The recent identification and characterization of the Arabidopsis thaliana microtubule organization mutant, mor1, begins to address this challenge and here we highlight the significance of this work.  相似文献   

18.
Assembly of Caenorhabditis elegans female meiotic spindles requires both MEI-1 and MEI-2 subunits of the microtubule-severing ATPase katanin. Strong loss-of-function mutants assemble apolar intersecting microtubule arrays, whereas weaker mutants assemble bipolar meiotic spindles that are longer than wild type. To determine whether katanin is also required for spindle maintenance, we monitored metaphase I spindles after a fast-acting mei-1(ts) mutant was shifted to a nonpermissive temperature. Within 4 min of temperature shift, bivalents moved off the metaphase plate, and microtubule bundles within the spindle lengthened and developed a high degree of curvature. Spindles eventually lost bipolar structure. Immunofluorescence of embryos fixed at increasing temperature indicated that MEI-1 was lost from spindle microtubules before loss of ASPM-1, indicating that MEI-1 and ASPM-1 act independently at spindle poles. We quantified the microtubule-severing activity of purified MEI-1/MEI-2 complexes corresponding to six different point mutations and found a linear relationship between microtubule disassembly rate and meiotic spindle length. Previous work showed that katanin is required for severing at points where two microtubules intersect in vivo. We show that purified MEI-1/MEI-2 complexes preferentially sever at intersections between two microtubules and directly bundle microtubules in vitro. These activities could promote parallel/antiparallel microtubule organization in meiotic spindles.  相似文献   

19.
Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Firstly, we applied quantitative proteomics to determine global cell cycle changes in the profiles of MAPs in human and Drosophila cells. This uncovered a wide range of cell cycle regulations of MAPs previously unidentified. Secondly, systematic studies of human kinesins highlighted an overlooked aspect of kinesins: most mitotic kinesins suppress their affinity to microtubules or reduce their protein levels in interphase in combination with nuclear localization. Thirdly, in-depth analysis of a novel Drosophila MAP (Mink) revealed that the suppression of the microtubule affinity of this mitotic MAP in combination with nuclear localization is essential for microtubule organization in interphase, and phosphorylation of Mink is needed for kinetochore-microtubule attachment in mitosis. Thus, this first comprehensive analysis of MAP regulation for the interphase/mitosis transition advances our understanding of kinesin biology and reveals the prevalence and importance of multi-layered MAP regulation.Microtubules are universally found in eukaryotic cells and are involved in diverse processes including cell division, polarity, and intracellular transport. A striking feature of microtubules is that they change their dynamics and organization depending on cellular contexts. Proteins that interact with microtubules, collectively called microtubule-associated proteins (MAPs),1 are considered to play a major role in determining microtubule dynamics and organization.Although MAPs in general lack recognizable sequence motifs, many MAPs from various sources have been successfully identified by means of biochemical purification followed by mass spectrometry (14). However, functional analysis is more problematic, as hundreds of MAPs can interact with microtubules. In addition, multiple MAPs have functional redundancy (57), making their biological function often difficult to determine, which results in their importance being grossly underappreciated. Furthermore, it is challenging to understand how MAPs collectively determine the diverse organization and dynamics of microtubules in different cells.One of the most dramatic changes of microtubule organization is found at the transition from interphase to mitosis. During mitosis, microtubules are much more dynamic and are organized into a dense bipolar structure, the spindle, whereas microtubules in interphase are less dynamic and are arranged in a radial array. This transition is rapid and is thought to reflect mainly a change in the activities of both motor and nonmotor MAPs (8); however, we do not have sufficient knowledge of how MAPs themselves are regulated. It is crucial to identify and understand the regulation of MAPs whose activities change in the cell cycle, and how they collectively change microtubule dynamics and organization. Misregulation of such MAPs could interfere with chromosome segregation or cell polarity and potentially contribute to oncogenesis (9). Also, this misregulation can be used to elucidate important functions that are masked due to functional redundancy.We hypothesize that some proteins bind to microtubules only during mitosis and are released from microtubules in interphase. The binding of such proteins to spindle microtubules in mitosis could collectively trigger the formation of the functional spindle, and, of equal importance, removing such proteins from microtubules at the mitotic exit could be essential for disassembling the spindle and proper organization and/or function of interphase microtubules. Conversely, some proteins may bind to microtubules specifically during interphase. No studies have been reported that systematically identify proteins whose microtubule-binding activities change between interphase and mitosis.Here we report a combined approach integrating three levels of analyses to gain insights into how MAPs are regulated as a whole to drive microtubule reorganization at the transition between interphase and mitosis. Firstly, we applied proteomics to determine the quantitative change of the global MAP profile between mitosis and interphase in both human and Drosophila cells. Secondly, we systematically analyzed the human kinesin superfamily for cell cycle localization in relation to microtubule association to gain insight into the general principle of MAP regulation in the cell cycle. Thirdly, we focused on one novel Drosophila MAP to understand the molecular mechanism and biological significance of MAP regulation. This integrated approach has provided the framework of MAP regulation critical for the interphase/mitosis transition.  相似文献   

20.
A L Cleary  L G Smith 《The Plant cell》1998,10(11):1875-1888
The cytoskeleton plays a major role in the spatial regulation of plant cell division and morphogenesis. Arrays of microtubules and actin filaments present in the cell cortex during prophase mark sites to which phragmoplasts and associated cell plates are guided during cytokinesis. During interphase, cortical microtubules are believed to influence the orientation of cell expansion by guiding the pattern in which cell wall material is laid down. Little is known about the mechanisms that regulate these cytoskeleton-dependent processes critical for plant development. Previous work showed that the Tangled1 (Tan1) gene of maize is required for spatial regulation of cytokinesis during maize leaf development but not for leaf morphogenesis. Here, we examine the cytoskeletal arrays associated with cell division and morphogenesis during the development of tan1 and wild-type leaves. Our analysis leads to the conclusion that Tan1 is required both for the positioning of cytoskeletal arrays that establish planes of cell division during prophase and for spatial guidance of expanding phragmoplasts toward preestablished cortical division sites during cytokinesis. Observations on the organization of interphase cortical microtubules suggest that regional influences may play a role in coordinating cell expansion patterns among groups of cells during leaf morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号