首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pepper (Capsicum annuum) Bs3 gene confers resistance to avrBs3-expressing strains of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria. To physically delimit Bs3, a pepper YAC library was screened with two flanking DNA markers that are separated from Bs3 by 1.0 and 1.2 cM, respectively resulting in the identification of three YAC clones. Genetic mapping of the corresponding YACends revealed however, that these YACs do not cover Bs3 and subsequent screens with newly developed YACend markers failed to identify new YAC clones. Marker saturation at the Bs3 locus was carried out by amplified fragment length polymorphism (AFLP). The analysis of 1,024 primer combinations resulted in the identification of 47 new Bs3-linked AFLPs. High-resolution linkage mapping of Bs3 was accomplished by inspecting more than 4,000 F2 segregants resulting in a genetic resolution of 0.01 cM. Using tightly Bs3-linked YACend- and AFLP-derived markers we established a Bs3-spanning BAC contig and physically delimited the target gene within one BAC clone. The analysis of the Bs3-containing genomic region revealed substantial local variation in the correlation of genetic and physical distances.  相似文献   

2.
The pepper (Capsicum annuum) Bs3 gene confers resistance to Xanthomonas campestris pv vesicatoria strains expressing the avirulence protein AvrBs3. Using amplified fragment length polymorphism (AFLP) and bulked DNA templates from resistant and susceptible plants we identified markers linked to Bs3 and defined a 2.1-cM interval containing the target gene. Bs3-linked AFLP fragments were cloned and conformity of isolated PCR products with the desired markers was determined by hybridisation to membrane-bound AFLP reactions. AFLP markers flanking the target gene were converted into locus-specific PCR-based markers. These markers were employed for the analysis of 790 plants segregating for Bs3, resulting in a linkage map with a genetic resolution of 0.13 cM. Mapping of Bs3-linked markers in tomato placed them to a syntenic interval on tomato chromosome 2. Received: 15 October 1999 / Accepted: 29 November 1999  相似文献   

3.
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato,ripening-inhibitor (rin), andnon-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning therin andnor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning therin locus is estimated to be 200–300 kb/cM, while thenor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked torin andnor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains thenot locus.  相似文献   

4.
Ripening represents a complex developmental process unique to plants. We are using tomato fruit ripening mutants as tools to understand the regulatory components that control and coordinate the physiological and biochemical changes which collectively confer the ripe phenotype. We have genetically characterized two loci which result in significant inhibition of the ripening process in tomato,ripening-inhibitor (rin), andnon-ripening (nor), as a first step toward isolating genes likely to encode key regulators of this developmental process. A combination of pooled-sample mapping as well as classical restriction fragment length polymorphism (RFLP) analysis has permitted the construction of high-density genetic maps for the regions of chromosomes 5 and 10 spanning therin andnor loci, respectively. To assess the feasibility of initiating a chromosome walk, physical mapping of high molecular weight genomic DNA has been employed to estimate the relationship between physical distance (in kb) and genetic distance (in cM) around the targeted loci. Based on this analysis, the relationship in the region spanning therin locus is estimated to be 200–300 kb/cM, while thenor locus region ratio is approximately 200 kb/1 cM. Using RFLP markers tightly linked torin andnor, chromosome walks have been initiated to both loci in a yeast artificial chromosome (YAC) library of tomato genomic DNA. We have isolated and characterized several YAC clones linked to each of the targeted ripening loci and present genetic evidence that at least one YAC clone contains thenot locus.  相似文献   

5.
The Bs2 resistance gene of pepper confers resistance against the bacterial pathogen Xanthomonas campestris pv. vesicatoria. As a first step toward isolation of the Bs2 gene, molecular markers tightly linked to the gene were identified by randomly amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) analysis of near-isogenic lines. Markers flanking the locus were identified and a high-resolution linkage map of the region was developed. One AFLP marker, A2, was found to cosegregate with the locus, while two others, F1 and B3, flank the locus and are within 0.6 cM. Physical mapping of the A2 and F1 markers indicates that these markers may be within 150 kb of each other. Together, these results indicate that the Bs2 region may be cloned either by chromosome walker or landing. The linked markers were also used to characterize gamma-irradiation-induced mutants at the Bs2 locus. Received: 15 January 1999 / Accepted: 11 May 1999  相似文献   

6.
A map-based cloning technique for crop plants is being developed using tomato as a model system. The target gene jointless is a recessive mutation that completely suppresses the formation of flower and fruit pedicel abscission zones. Previously, the jointless locus was mapped to a 3 cM interval between the two molecular markers TG523 and RPD158. Physical mapping of the jointless region by pulsed-field gel electrophoresis demonstrated that TG523 and RPD158 reside on a 600 kb SmaI fragment. In this study, TG523 was used as a probe to screen a tomato yeast artificial chromosome (YAC) library. Six tomato YAC (TY) clones were isolated, ranging from 220 to 380 kb in size. Genetic mapping of YAC ends demonstrated that this set of overlapping YACs encompasses the jointless locus. Two YAC ends, TY159L (L indicates left end) and TY143R (R indicates right end), cosegregate with the jointless locus. Only one of the six YACs (TY142) contained single-copy DNA sequences at both ends that could be mapped. The two ends of TY142 were mapped to either side of the jointless locus, indicating that TY142 contains a contiguous 285 kb tomato DNA fragment that probably includes the jointless locus. Physical mapping of the TY142 clone revealed that TY159L and TY143R reside on a 55 kb SalI fragment. Southern blot hybridization analysis of the DNAs of tomato lines nearly isogenic for the jointless mutation has allowed localization of the target locus to a region of less than 50 kb within the TY142 clone.Communicated by H. Saedler  相似文献   

7.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

8.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

9.
Tomato plants homozygous for the recessive lateral suppressor (ls) mutation show a number of phenotypic abnormalities among which the lack of lateral meristem initiation during vegetative growth and the absence of petals on the flower are the most prominent. As a first step towards the isolation of the Ls gene by means of map-based cloning, we have determined its position on the restriction fragment length polymorphism (RFLP) map of tomato. RFLP analysis of 527 F2 plants segregating for the ls allele allowed us to define an interval of 0.8 cM in which the Ls gene is located. Analysis of the physical distance between the two flanking RFLP markers by pulsed field gel electrophoresis revealed that they lie no further than 375 kb apart. Knowledge of the physical distance together with the availability of a tomato yeast artificial chromosome (YAC) library, makes it feasible to isolate the Ls gene by a map-based cloning approach.  相似文献   

10.
Tomato plants homozygous for the recessive lateral suppressor (ls) mutation show a number of phenotypic abnormalities among which the lack of lateral meristem initiation during vegetative growth and the absence of petals on the flower are the most prominent. As a first step towards the isolation of the Ls gene by means of map-based cloning, we have determined its position on the restriction fragment length polymorphism (RFLP) map of tomato. RFLP analysis of 527 F2 plants segregating for the ls allele allowed us to define an interval of 0.8 cM in which the Ls gene is located. Analysis of the physical distance between the two flanking RFLP markers by pulsed field gel electrophoresis revealed that they lie no further than 375 kb apart. Knowledge of the physical distance together with the availability of a tomato yeast artificial chromosome (YAC) library, makes it feasible to isolate the Ls gene by a map-based cloning approach.  相似文献   

11.
Cnr (Colourless non-ripening) is a dominant pleiotropic ripening mutation of tomato (Lycopersicon esculentum) which has previously been mapped to the proximal region of tomato chromosome 2. We describe the fine mapping of the Cnr locus using both linkage analysis and fluorescence in situ hybridisation (FISH). Restriction fragment length polymorphism (RFLP)-, amplified restriction fragment polymorphism (AFLP)-, and cleaved amplified polymorphic sequence (CAPS)-based markers, linked to the Cnr locus were mapped onto the long arm of chromosome 2. Detailed linkage analysis indicated that the Cnr locus was likely to lie further away from the top of the long arm than previously thought. This was confirmed by FISH, which was applied to tomato pachytene chromosomes in order to gain an insight into the organisation of hetero- and euchromatin and its relationship to the physical and genetic distances in the Cnr region. Three molecular markers linked to Cnr were unambiguously located by FISH to the long arm of chromosome 2 using individual BAC probes containing these single-copy sequences. The physical order of the markers coincided with that established by genetic analysis. The two AFLP markers most-closely linked to the Cnr locus were located in the euchromatic region 2.7-cM apart. The physical distance between these markers was measured on the pachytene spreads and estimated to be approximately 900 kb, suggesting a bp:cM relationship in this region of chromosome 2 of about 330 kb/cM. This is less than half the average value of 750 kb/cM for the tomato genome. The relationship between genetic and physical distances on chromosome 2 is discussed. Received: 11 January 2001 / Accepted: 30 April 2001  相似文献   

12.
The co mutation of Arabidopsis thaliana causes a late-flowering phenotype that is insensitive to day-ength. The mutation was mapped previously to the upper arm of chromosome 5, approximately 1.6 cM from the chalcone synthase gene (CHS). We were provided with five yeast artificial chromosome (YAC) libraries and used these to perform a chromosome walk from CHS to the CO gene. In this paper we report the isolation of 1700 kb of contiguous Arabidopsis DNA, which represents approximately 1%–2% of the genome, inserted in YACs. This required the detailed analysis of 67 YACs, from which 87 end probes were isolated and examined in hybridisation experiments. This analysis showed that approximately 40% of the YACs presented problems in chromosome walking experiments because they contained repetitive sequence at one of their termini, were chimaeric or because part of the plant DNA was deleted. DNA fragments isolated from YACs were used as restriction fragment length polymorphism (RFLP) markers to localize CO to a 300 kb region within the cloned DNA. We compare the physical distance between CHS and CO with the genetic distance and find that in this region 1 cM is equivalent to approximately 200 kb.  相似文献   

13.
In Peronospora parasitica (At) (downy mildew), the genetic determinants of cultivar-specific recognition by Arabidopsis thaliana are the Arabidopsis thaliana-recognised (ATR) avirulence genes. We describe the identification of 10 amplified fragment length polymorphism (AFLP) markers that define a genetic mapping interval for the ATR1Nd avirulence allele, the presence of which is perceived by the RPP1Nd resistance gene. Furthermore, we have constructed a P. parasitica (At) bacterial artificial chromosome (BAC) library comprising over 630Mb of cloned DNA. We have isolated 16 overlapping clones from the BAC library that form a contig spanning the genetic interval. BAC sequence-derived markers and a total mapping population of 311 F(2) individuals were used to refine the ATR1Nd locus to a 1cM interval that is represented by four BAC clones and spans less than 250kb of DNA. This work demonstrates that map-based cloning techniques are feasible in this organism and provides the critical foundations for cloning ATR1Nd using such a strategy.  相似文献   

14.
Map-based cloning methods have been applied for isolation of Xa-1, one of the bacterial blight resistance genes in rice.Xa-1 was previously mapped on chromosome 4 using molecular markers. For positional cloning of Xa-1, a high-resolution genetic map was made for theXa-1 region using an F2 population of 402 plants and additional molecular markers. Three restriction fragment length polymorphism (RFLP) markers, XNpb235, XNpb264 and C600 were found to be linked tightly to Xa-1, with no recombinants, and U08 750 was mapped 1.5 cM from Xa-1. The screening of a yeast artificial chromosome (YAC) library using theseXa-1-linked RFLP markers resulted in the identification of ten contiguous YAC clones. Among these, one YAC clone, designated Y5212, with an insert of 340 kb, hybridized with all three tightly linked markers. This YAC was confirmed to possess the Xa-1 allele by mapping the Xa-1 gene between both end clones of this YAC (Y5212R and Y5212L).  相似文献   

15.
A physical map of rice chromosome 5 was constructed with yeastartificial chromosome (YAC) clones along a high-resolution molecularlinkage map carrying 118 DNA markers distributed over 123.7cM of genomic DNA. YAC clones have been identified by colonyand Southern hybridization for 105 restriction fragment lengthpolymorphism (RFLP) markers and by polymerase chain reaction(PCR) screening for 8 sequence-tagged site (STS) markers and5 randomly amplified polymorphic DNA (RAPD) markers. Of 458YACs, 235 individual YACs with an average insert length of 350kb were selected and ordered on chromosome 5 from the YAC library.Forty-eight contigs covering nearly 21 Mb were formed on thechromosome 5; the longest one was 6 cM and covered 1.5 Mb. Thelength covered with YAC clones corresponded to 62% of the totallength of chromosome 5. There were many multicopy sequencesof expressed genes on chromosome 5. The distribution of manycopies of these expressed gene sequences was determined by YACSouthern hybridization and is discussed. A physical map withthese characteristics provides a powerful tool for elucidationof genome structure and extraction of useful genetic informationin rice.  相似文献   

16.
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.  相似文献   

17.
The co mutation of Arabidopsis thaliana causes a late-flowering phenotype that is insensitive to day-ength. The mutation was mapped previously to the upper arm of chromosome 5, approximately 1.6 cM from the chalcone synthase gene (CHS). We were provided with five yeast artificial chromosome (YAC) libraries and used these to perform a chromosome walk from CHS to the CO gene. In this paper we report the isolation of 1700 kb of contiguous Arabidopsis DNA, which represents approximately 1%–2% of the genome, inserted in YACs. This required the detailed analysis of 67 YACs, from which 87 end probes were isolated and examined in hybridisation experiments. This analysis showed that approximately 40% of the YACs presented problems in chromosome walking experiments because they contained repetitive sequence at one of their termini, were chimaeric or because part of the plant DNA was deleted. DNA fragments isolated from YACs were used as restriction fragment length polymorphism (RFLP) markers to localize CO to a 300 kb region within the cloned DNA. We compare the physical distance between CHS and CO with the genetic distance and find that in this region 1 cM is equivalent to approximately 200 kb.  相似文献   

18.
Pollen development requires both sporophytic and gametophytic gene expression. We are using a map-based cloning technique to isolate sporophytic genes which, when mutant, cause pollen abortion and a male sterile (ms) phenotype in tomato (Lycopersicon esculentum). We have genetically characterized onems locus (ms14) using RFLP analysis and identified flanking markers. High-resolution genomic physical mapping indicates that thems14 locus is located in a ~300 kb region. We have identified a YAC clone with an insert size of ~610 kb that contains thems14-linked markers, reflects the organization of the physical map and therefore most probably contains thems14 gene. In addition, we present evidence that the relationship between physical and genetic distance in this chromosomal region changes abruptly from ~105–140 kb/cM to less than 24 kb/cM, and suggest that the TG393-TG104 region is a hotspot for recombination.  相似文献   

19.
For whole-genome analysis in a basal chordate (protochordate), we used F1 pseudo-testcross mapping strategy and amplified fragment length polymorphism (AFLP) markers to construct primary linkage maps of the ascidian tunicate Ciona intestinalis. Two genetic maps consisted of 14 linkage groups, in agreement with the haploid chromosome number, and contained 276 and 125 AFLP loci derived from crosses between British and Neapolitan individuals. The two maps covered 4218.9 and 2086.9 cM, respectively, with an average marker interval of 16.1 and 18.9 cM. We observed a high recombinant ratio, ranging from 25 to 49 kb/cM, which can explain the high degree of polymorphism in this species. Some AFLP markers were converted to sequence tagged sites (STSs) by sequence determination, in order to create anchor markers for the fragmental physical map. Our recombination tools provide basic knowledge of genetic status and whole genome organization, and genetic markers to assist positional cloning in C. intestinalis.  相似文献   

20.
Fragile X syndrome is the most frequent form of inherited mental retardation and is associated with a fragile site at Xq27.3. We identified human YAC clones that span fragile X site-induced translocation breakpoints coincident with the fragile X site. A gene (FMR-1) was identified within a four cosmid contig of YAC DNA that expresses a 4.8 kb message in human brain. Within a 7.4 kb EcoRI genomic fragment, containing FMR-1 exonic sequences distal to a CpG island previously shown to be hypermethylated in fragile X patients, is a fragile X site-induced breakpoint cluster region that exhibits length variation in fragile X chromosomes. This fragment contains a lengthy CGG repeat that is 250 bp distal of the CpG island and maps within a FMR-1 exon. Localization of the brain-expressed FMR-1 gene to this EcoRI fragment suggests the involvement of this gene in the phenotypic expression of the fragile X syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号